You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Built with Axolotl

See axolotl config

axolotl version: 0.8.1

# This is the huggingface model that contains *.pt, *.safetensors, or *.bin files
# This can also be a relative path to a model on disk
base_model: ./step1-embed-model/merged/

# Use CUDA bf16
bf16: auto
tf32: false

# List[str]. Add plugins to extend the pipeline.
# See `src/axolotl/integrations` for the available plugins or doc below for more details.
# https://axolotl-ai-cloud.github.io/axolotl/docs/custom_integrations.html
plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true

# A list of one or more datasets to finetune the model with
datasets:
  # HuggingFace dataset repo | s3://,gs:// path | "json" for local dataset, make sure to fill data_files
  - path: train_v2.1.jsonl
    # The type of prompt to use for training. [alpaca, gpteacher, oasst, reflection]
    type: input_output # format | format:<prompt_style> (chat/instruct) | <prompt_strategies>.load_<load_fn>

# If false, the datasets will not be shuffled and will keep their original order in `datasets`.
# The same applies to the `test_datasets` option and the `pretraining_dataset` option. Default is true.
shuffle_merged_datasets: false

# Axolotl attempts to save the dataset as an arrow after packing the data together so
# subsequent training attempts load faster, relative path
dataset_prepared_path: data/llama33fix_prepared
# The maximum number of processes to use while preprocessing your input dataset. This defaults to `os.cpu_count()`
# if not set.
dataset_processes: 1
# push checkpoints to hub
hub_model_id: AlexHung29629/llama33_fix3
hub_strategy: end
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# Required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: true
# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc. 0 for no eval.
val_set_size: 0

# The maximum length of an input to train with, this should typically be less than 2048
# as most models have a token/context limit of 2048
sequence_len: 2048
# Pad inputs so each step uses constant sized buffers
# This will reduce memory fragmentation and may prevent OOMs, by re-using memory more efficiently
pad_to_sequence_len: true
# Use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true'
sample_packing: false

# wandb configuration if you're using it
# Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`.
wandb_mode: disabled

# Tensorboard
use_tensorboard: true

# Where to save the full-finetuned model to
output_dir: ./step2-model


# Training hyperparameters

# If greater than 1, backpropagation will be skipped and the gradients will be accumulated for the given number of steps.
gradient_accumulation_steps: 1
# The number of samples to include in each batch. This is the number of samples sent to each GPU.
# Batch size per gpu = micro_batch_size * gradient_accumulation_steps
micro_batch_size: 1
num_epochs: 4
warmup_ratio: 0.0  # cannot use with warmup_steps
learning_rate: 2e-6
logging_steps: 1
save_strategy: epoch
#save_steps: 1000
saves_per_epoch: 1

# Whether to use gradient checkpointing. Available options are: true, false, "offload".
# https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing
gradient_checkpointing: true
# additional kwargs to pass to the trainer for gradient checkpointing
#gradient_checkpointing_kwargs:
#   use_reentrant: true

# Specify a scheduler and kwargs to use with the optimizer
lr_scheduler: cosine

optimizer: adamw_torch

# Specify weight decay
weight_decay: 0
# adamw hyperparams
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-8
# Gradient clipping max norm
max_grad_norm: 1

# Optional[bool]. Whether to use flash attention patch https://github.com/Dao-AILab/flash-attention:
flash_attention: true
fsdp_final_state_dict_type: SHARDED_STATE_DICT
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: true
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
  fsdp_backward_prefetch: BACKWARD_PRE
special_tokens:
  pad_token: <|finetune_right_pad_id|>
  eos_token: <|eot_id|>
# Deepspeed config path. e.g., deepspeed_configs/zero3.json
#deepspeed: /mnt/shared/twsc/alex/reasoning/zero3_bf16.json

# Seed
seed: 42
save_only_model: true

llama33_fix3

This model was trained from scratch on the train_v2.1.jsonl dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 8
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 4.0

Training results

Framework versions

  • Transformers 4.51.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
36
Safetensors
Model size
70.6B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support