Whisper Small Hi - Sanchit Gandhi

This model is a fine-tuned version of nurzhanit/whisper-enhanced-ml on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0073
  • Wer: 4.1441

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer
0.3134 3.125 50 0.1611 13.9040
0.0807 6.25 100 0.0474 7.5329
0.0419 9.375 150 0.0497 8.4043
0.03 12.5 200 0.0239 5.5577
0.0217 15.625 250 0.0185 6.6421
0.0198 18.75 300 0.0152 4.5895
0.0137 21.875 350 0.0109 4.2796
0.011 25.0 400 0.0092 4.9380
0.0107 28.125 450 0.0087 4.8412
0.01 31.25 500 0.0082 4.2796
0.0089 34.375 550 0.0082 4.3184
0.0087 37.5 600 0.0083 4.9961
0.0083 40.625 650 0.0077 4.8025
0.0085 43.75 700 0.0076 4.3571
0.0082 46.875 750 0.0077 4.3765
0.0085 50.0 800 0.0075 4.2603
0.0082 53.125 850 0.0074 4.3184
0.0077 56.25 900 0.0073 4.2409
0.0067 59.375 950 0.0073 4.3184
0.0074 62.5 1000 0.0073 4.1441

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.2
  • Tokenizers 0.19.1
Downloads last month
365
Safetensors
Model size
242M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for nurzhanit/whisper-omg-2

Unable to build the model tree, the base model loops to the model itself. Learn more.

Dataset used to train nurzhanit/whisper-omg-2

Evaluation results