Whisper Small Hi - Sanchit Gandhi

This model is a fine-tuned version of nurzhanit/whisper-enhanced-ml on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Wer: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0365 0.8621 50 0.0179 2.0516
0.0151 1.7241 100 0.0088 0.8943
0.0086 2.5862 150 0.0046 0.7365
0.0031 3.4483 200 0.0035 0.7891
0.0017 4.3103 250 0.0022 0.3945
0.0033 5.1724 300 0.0011 0.2104
0.0015 6.0345 350 0.0004 0.2630
0.0003 6.8966 400 0.0005 0.1841
0.0012 7.7586 450 0.0004 0.2104
0.0003 8.6207 500 0.0002 0.0
0.0002 9.4828 550 0.0002 0.0
0.0001 10.3448 600 0.0001 0.0
0.0001 11.2069 650 0.0001 0.0
0.0001 12.0690 700 0.0001 0.0
0.0001 12.9310 750 0.0001 0.0
0.0001 13.7931 800 0.0001 0.0
0.0001 14.6552 850 0.0001 0.0
0.0001 15.5172 900 0.0001 0.0
0.0001 16.3793 950 0.0001 0.0
0.0001 17.2414 1000 0.0001 0.0

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.2
  • Tokenizers 0.19.1
Downloads last month
145,017
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for nurzhanit/whisper-omg-2

Unable to build the model tree, the base model loops to the model itself. Learn more.

Dataset used to train nurzhanit/whisper-omg-2

Evaluation results