NuExtract-2-8B [experimental version] by NuMind π₯
NuExtract 2.0 experimental is a family of models trained specifically for structured information extraction tasks. It supports both multimodal inputs and is multilingual. NB: This is an experimental version that will be superseeded by NuExtract 2.0
We provide several versions of different sizes, all based on the InternVL2.5 family.
Model Size | Model Name | Base Model | Huggingface Link |
---|---|---|---|
2B | NuExtract-2.0-2B | InternVL2_5-2B | NuExtract-2-2B |
4B | NuExtract-2.0-4B | InternVL2_5-4B | NuExtract-2-4B |
8B | NuExtract-2.0-8B | InternVL2_5-8B | NuExtract-2-8B |
Overview
To use the model, provide an input text/image and a JSON template describing the information you need to extract. The template should be a JSON object, specifying field names and their expected type.
Support types include:
verbatim-string
- instructs the model to extract text that is present verbatim in the input.string
- a generic string field that can incorporate paraphrasing/abstraction.integer
- a whole number.number
- a whole or decimal number.date-time
- ISO formatted date.- Array of any of the above types (e.g.
["string"]
) enum
- a choice from set of possible answers (represented in template as an array of options, e.g.["yes", "no", "maybe"]
).multi-label
- an enum that can have multiple possible answers (represented in template as a double-wrapped array, e.g.[["A", "B", "C"]]
).
If the model does not identify relevant information for a field, it will return null
or []
(for arrays and multi-labels).
The following is an example template:
{
"first_name": "verbatim-string",
"last_name": "verbatim-string",
"description": "string",
"age": "integer",
"gpa": "number",
"birth_date": "date-time",
"nationality": ["France", "England", "Japan", "USA", "China"],
"languages_spoken": [["English", "French", "Japanese", "Mandarin", "Spanish"]]
}
An example output:
{
"first_name": "Susan",
"last_name": "Smith",
"description": "A student studying computer science.",
"age": 20,
"gpa": 3.7,
"birth_date": "2005-03-01",
"nationality": "England",
"languages_spoken": ["English", "French"]
}
β οΈ We recommend using NuExtract with a temperature at or very close to 0. Some inference frameworks, such as Ollama, use a default of 0.7 which is not well suited to many extraction tasks.
Inference
Use the following code to handle loading and preprocessing of input data:
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def prepare_inputs(messages, image_paths, tokenizer, device='cuda', dtype=torch.bfloat16):
"""
Prepares multi-modal input components (supports multiple images per prompt).
Args:
messages: List of input messages/prompts (strings or dicts with 'role' and 'content')
image_paths: List where each element is either None (for text-only) or a list of image paths
tokenizer: The tokenizer to use for applying chat templates
device: Device to place tensors on ('cuda', 'cpu', etc.)
dtype: Data type for image tensors (default: torch.bfloat16)
Returns:
dict: Contains 'prompts', 'pixel_values_list', and 'num_patches_list' ready for the model
"""
# Make sure image_paths list is at least as long as messages
if len(image_paths) < len(messages):
# Pad with None for text-only messages
image_paths = image_paths + [None] * (len(messages) - len(image_paths))
# Process images and collect patch information
loaded_images = []
num_patches_list = []
for paths in image_paths:
if paths and isinstance(paths, list) and len(paths) > 0:
# Load each image in this prompt
prompt_images = []
prompt_patches = []
for path in paths:
# Load the image
img = load_image(path).to(dtype=dtype, device=device)
# Ensure img has correct shape [patches, C, H, W]
if len(img.shape) == 3: # [C, H, W] -> [1, C, H, W]
img = img.unsqueeze(0)
prompt_images.append(img)
# Record the number of patches for this image
prompt_patches.append(img.shape[0])
loaded_images.append(prompt_images)
num_patches_list.append(prompt_patches)
else:
# Text-only prompt
loaded_images.append(None)
num_patches_list.append([])
# Create the concatenated pixel_values_list
pixel_values_list = []
for prompt_images in loaded_images:
if prompt_images:
# Concatenate all images for this prompt
pixel_values_list.append(torch.cat(prompt_images, dim=0))
else:
# Text-only prompt
pixel_values_list.append(None)
# Format messages for the model
if all(isinstance(m, str) for m in messages):
# Simple string messages: convert to chat format
batch_messages = [
[{"role": "user", "content": message}]
for message in messages
]
else:
# Assume messages are already in the right format
batch_messages = messages
# Apply chat template
prompts = tokenizer.apply_chat_template(
batch_messages,
tokenize=False,
add_generation_prompt=True
)
return {
'prompts': prompts,
'pixel_values_list': pixel_values_list,
'num_patches_list': num_patches_list
}
def construct_message(text, template, examples=None):
"""
Construct the individual NuExtract message texts, prior to chat template formatting.
"""
# add few-shot examples if needed
if examples is not None and len(examples) > 0:
icl = "# Examples:\n"
for row in examples:
icl += f"## Input:\n{row['input']}\n## Output:\n{row['output']}\n"
else:
icl = ""
return f"""# Template:\n{template}\n{icl}# Context:\n{text}"""
To handle inference:
IMG_START_TOKEN='<img>'
IMG_END_TOKEN='</img>'
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'
def nuextract_generate(model, tokenizer, prompts, generation_config, pixel_values_list=None, num_patches_list=None):
"""
Generate responses for a batch of NuExtract inputs.
Support for multiple and varying numbers of images per prompt.
Args:
model: The vision-language model
tokenizer: The tokenizer for the model
pixel_values_list: List of tensor batches, one per prompt
Each batch has shape [num_images, channels, height, width] or None for text-only prompts
prompts: List of text prompts
generation_config: Configuration for text generation
num_patches_list: List of lists, each containing patch counts for images in a prompt
Returns:
List of generated responses
"""
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
model.img_context_token_id = img_context_token_id
# Replace all image placeholders with appropriate tokens
modified_prompts = []
total_image_files = 0
total_patches = 0
image_containing_prompts = []
for idx, prompt in enumerate(prompts):
# check if this prompt has images
has_images = (pixel_values_list and
idx < len(pixel_values_list) and
pixel_values_list[idx] is not None and
isinstance(pixel_values_list[idx], torch.Tensor) and
pixel_values_list[idx].shape[0] > 0)
if has_images:
# prompt with image placeholders
image_containing_prompts.append(idx)
modified_prompt = prompt
patches = num_patches_list[idx] if (num_patches_list and idx < len(num_patches_list)) else []
num_images = len(patches)
total_image_files += num_images
total_patches += sum(patches)
# replace each <image> placeholder with image tokens
for i, num_patches in enumerate(patches):
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * model.num_image_token * num_patches + IMG_END_TOKEN
modified_prompt = modified_prompt.replace('<image>', image_tokens, 1)
else:
# text-only prompt
modified_prompt = prompt
modified_prompts.append(modified_prompt)
# process all prompts in a single batch
tokenizer.padding_side = 'left'
model_inputs = tokenizer(modified_prompts, return_tensors='pt', padding=True)
input_ids = model_inputs['input_ids'].to(model.device)
attention_mask = model_inputs['attention_mask'].to(model.device)
eos_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>\n".strip())
generation_config['eos_token_id'] = eos_token_id
# prepare pixel values
flattened_pixel_values = None
if image_containing_prompts:
# collect and concatenate all image tensors
all_pixel_values = []
for idx in image_containing_prompts:
all_pixel_values.append(pixel_values_list[idx])
flattened_pixel_values = torch.cat(all_pixel_values, dim=0)
print(f"Processing batch with {len(prompts)} prompts, {total_image_files} actual images, and {total_patches} total patches")
else:
print(f"Processing text-only batch with {len(prompts)} prompts")
# generate outputs
outputs = model.generate(
pixel_values=flattened_pixel_values, # will be None for text-only prompts
input_ids=input_ids,
attention_mask=attention_mask,
**generation_config
)
# Decode responses
responses = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return responses
To load the model:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = ""
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, padding_side='left')
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2" # we recommend using flash attention
).to("cuda")
Simple 0-shot text-only example:
template = """{"names": ["verbatim-string"]}"""
text = "John went to the restaurant with Mary. James went to the cinema."
input_messages = [construct_message(text, template)]
input_content = prepare_inputs(
messages=input_messages,
image_paths=[],
tokenizer=tokenizer,
)
generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
with torch.no_grad():
result = nuextract_generate(
model=model,
tokenizer=tokenizer,
prompts=input_content['prompts'],
pixel_values_list=input_content['pixel_values_list'],
num_patches_list=input_content['num_patches_list'],
generation_config=generation_config
)
for y in result:
print(y)
# {"names": ["John", "Mary", "James"]}
Text-only input with an in-context example:
template = """{"names": ["verbatim-string"], "female_names": ["verbatim-string"]}"""
text = "John went to the restaurant with Mary. James went to the cinema."
examples = [
{
"input": "Stephen is the manager at Susan's store.",
"output": """{"names": ["STEPHEN", "SUSAN"], "female_names": ["SUSAN"]}"""
}
]
input_messages = [construct_message(text, template, examples)]
input_content = prepare_inputs(
messages=input_messages,
image_paths=[],
tokenizer=tokenizer,
)
generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
with torch.no_grad():
result = nuextract_generate(
model=model,
tokenizer=tokenizer,
prompts=input_content['prompts'],
pixel_values_list=input_content['pixel_values_list'],
num_patches_list=input_content['num_patches_list'],
generation_config=generation_config
)
for y in result:
print(y)
# {"names": ["JOHN", "MARY", "JAMES"], "female_names": ["MARY"]}
Example with image input and an in-context example. Image inputs should use <image>
placeholder instead of text and image paths should be provided in a list in order of appearance in the prompt (in this example 0.jpg
will be for the in-context example and 1.jpg
for the true input).
template = """{"store": "verbatim-string"}"""
text = "<image>"
examples = [
{
"input": "<image>",
"output": """{"store": "Walmart"}"""
}
]
input_messages = [construct_message(text, template, examples)]
images = [
["0.jpg", "1.jpg"]
]
input_content = prepare_inputs(
messages=input_messages,
image_paths=images,
tokenizer=tokenizer,
)
generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
with torch.no_grad():
result = nuextract_generate(
model=model,
tokenizer=tokenizer,
prompts=input_content['prompts'],
pixel_values_list=input_content['pixel_values_list'],
num_patches_list=input_content['num_patches_list'],
generation_config=generation_config
)
for y in result:
print(y)
# {"store": "Trader Joe's"}
Multi-modal batched input:
inputs = [
# image input with no ICL examples
{
"text": "<image>",
"template": """{"store_name": "verbatim-string"}""",
"examples": None,
},
# image input with 1 ICL example
{
"text": "<image>",
"template": """{"store_name": "verbatim-string"}""",
"examples": [
{
"input": "<image>",
"output": """{"store_name": "Walmart"}""",
}
],
},
# text input with no ICL examples
{
"text": "John went to the restaurant with Mary. James went to the cinema.",
"template": """{"names": ["verbatim-string"]}""",
"examples": None,
},
# text input with ICL example
{
"text": "John went to the restaurant with Mary. James went to the cinema.",
"template": """{"names": ["verbatim-string"], "female_names": ["verbatim-string"]}""",
"examples": [
{
"input": "Stephen is the manager at Susan's store.",
"output": """{"names": ["STEPHEN", "SUSAN"], "female_names": ["SUSAN"]}"""
}
],
},
]
input_messages = [
construct_message(
x["text"],
x["template"],
x["examples"]
) for x in inputs
]
images = [
["0.jpg"],
["0.jpg", "1.jpg"],
None,
None
]
input_content = prepare_inputs(
messages=input_messages,
image_paths=images,
tokenizer=tokenizer,
)
generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
with torch.no_grad():
result = nuextract_generate(
model=model,
tokenizer=tokenizer,
prompts=input_content['prompts'],
pixel_values_list=input_content['pixel_values_list'],
num_patches_list=input_content['num_patches_list'],
generation_config=generation_config
)
for y in result:
print(y)
# {"store_name": "WAL*MART"}
# {"store_name": "Trader Joe's"}
# {"names": ["John", "Mary", "James"]}
# {"names": ["JOHN", "MARY", "JAMES"], "female_names": ["MARY"]}
Template Generation
If you want to convert existing schema files you have in other formats (e.g. XML, YAML, etc.) or start from an example, NuExtract 2 models can automatically generate this for you.
E.g. convert XML into a NuExtract template:
def generate_template(description):
input_messages = [description]
input_content = prepare_inputs(
messages=input_messages,
image_paths=[],
tokenizer=tokenizer,
)
generation_config = {"do_sample": True, "temperature": 0.4, "max_new_tokens": 256}
with torch.no_grad():
result = nuextract_generate(
model=model,
tokenizer=tokenizer,
prompts=input_content['prompts'],
pixel_values_list=input_content['pixel_values_list'],
num_patches_list=input_content['num_patches_list'],
generation_config=generation_config
)
return result[0]
xml_template = """<SportResult>
<Date></Date>
<Sport></Sport>
<Venue></Venue>
<HomeTeam></HomeTeam>
<AwayTeam></AwayTeam>
<HomeScore></HomeScore>
<AwayScore></AwayScore>
<TopScorer></TopScorer>
</SportResult>"""
result = generate_template(xml_template)
print(result)
# {
# "SportResult": {
# "Date": "date-time",
# "Sport": "verbatim-string",
# "Venue": "verbatim-string",
# "HomeTeam": "verbatim-string",
# "AwayTeam": "verbatim-string",
# "HomeScore": "integer",
# "AwayScore": "integer",
# "TopScorer": "verbatim-string"
# }
# }
E.g. generate a template from natural language description:
text = """Give me relevant info about startup companies mentioned."""
result = generate_template(text)
print(result)
# {
# "Startup_Companies": [
# {
# "Name": "verbatim-string",
# "Products": [
# "string"
# ],
# "Location": "verbatim-string",
# "Company_Type": [
# "Technology",
# "Finance",
# "Health",
# "Education",
# "Other"
# ]
# }
# ]
# }
- Downloads last month
- 1,896
Model tree for numind/NuExtract-2-8B-experimental
Base model
OpenGVLab/InternVL2_5-8B