Meta-Llama-3-8B-Instruct-mirage-mirage-gpt-4o-sft-instruct-llama-3
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the nthakur/mirage-gpt-4o-sft-instruct-llama-3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2505
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.3599 | 0.1268 | 200 | 0.3172 |
0.3295 | 0.2536 | 400 | 0.2919 |
0.323 | 0.3803 | 600 | 0.2789 |
0.3274 | 0.5071 | 800 | 0.2686 |
0.3171 | 0.6339 | 1000 | 0.2597 |
0.3034 | 0.7607 | 1200 | 0.2540 |
0.265 | 0.8875 | 1400 | 0.2510 |
Framework versions
- PEFT 0.10.0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 5
Model tree for nthakur/Meta-Llama-3-8B-Instruct-mirage-mirage-gpt-4o-sft-instruct-llama-3
Base model
meta-llama/Meta-Llama-3-8B-Instruct