HuBERT_Jibbali_lang

This model is a fine-tuned version of facebook/hubert-large-ll60k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2017
  • Wer: 0.1944
  • Cet: 0.1189

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cet
10.6563 0.99 56 5.6577 1.0 0.9812
3.3895 2.0 113 3.2018 1.0 0.9812
3.1588 2.99 169 3.1347 1.0 0.9812
3.1308 4.0 226 3.0567 1.0 0.9812
2.8933 4.99 282 2.8226 1.0 0.9353
2.5444 6.0 339 2.0947 1.0 0.8588
0.995 6.99 395 0.5049 0.4974 0.1654
0.3567 8.0 452 0.2622 0.2485 0.1132
0.2914 8.99 508 0.1980 0.2105 0.0749
0.14 10.0 565 0.2154 0.2069 0.0821
0.1442 10.99 621 0.1965 0.1988 0.0969
0.1401 12.0 678 0.2135 0.1937 0.0960
0.1019 12.99 734 0.2185 0.1948 0.1094
0.1088 14.0 791 0.1957 0.1966 0.1121
0.1314 14.99 847 0.1983 0.1933 0.1019
0.0522 16.0 904 0.2026 0.1944 0.1258
0.126 16.99 960 0.2033 0.1944 0.1142
0.1028 18.0 1017 0.1940 0.1974 0.1158
0.0767 18.99 1073 0.1969 0.1948 0.1149
0.0468 19.82 1120 0.2017 0.1944 0.1189

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
32
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nrshoudi/HuBERT_Jibbali_lang

Finetuned
(11)
this model