distilbert-base-uncased-distilled-clinc

This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3063
  • Accuracy: 0.9494

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 318 1.8614 0.7329
2.3518 2.0 636 0.7694 0.8565
2.3518 3.0 954 0.4345 0.9126
0.7002 4.0 1272 0.3663 0.9371
0.3298 5.0 1590 0.3418 0.9471
0.3298 6.0 1908 0.3318 0.9455
0.2692 7.0 2226 0.3242 0.9481
0.248 8.0 2544 0.3175 0.95
0.248 9.0 2862 0.3144 0.9494
0.2394 10.0 3180 0.3109 0.9513
0.2394 11.0 3498 0.3109 0.9497
0.2333 12.0 3816 0.3090 0.95
0.2305 13.0 4134 0.3089 0.9484
0.2305 14.0 4452 0.3074 0.9484
0.2278 15.0 4770 0.3063 0.9494

Framework versions

  • Transformers 4.16.2
  • Pytorch 2.4.1+cu121
  • Datasets 1.16.1
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model's library. Check the docs .

Dataset used to train nour-sam/distilbert-base-uncased-distilled-clinc

Evaluation results