distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.3063
- Accuracy: 0.9494
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 318 | 1.8614 | 0.7329 |
2.3518 | 2.0 | 636 | 0.7694 | 0.8565 |
2.3518 | 3.0 | 954 | 0.4345 | 0.9126 |
0.7002 | 4.0 | 1272 | 0.3663 | 0.9371 |
0.3298 | 5.0 | 1590 | 0.3418 | 0.9471 |
0.3298 | 6.0 | 1908 | 0.3318 | 0.9455 |
0.2692 | 7.0 | 2226 | 0.3242 | 0.9481 |
0.248 | 8.0 | 2544 | 0.3175 | 0.95 |
0.248 | 9.0 | 2862 | 0.3144 | 0.9494 |
0.2394 | 10.0 | 3180 | 0.3109 | 0.9513 |
0.2394 | 11.0 | 3498 | 0.3109 | 0.9497 |
0.2333 | 12.0 | 3816 | 0.3090 | 0.95 |
0.2305 | 13.0 | 4134 | 0.3089 | 0.9484 |
0.2305 | 14.0 | 4452 | 0.3074 | 0.9484 |
0.2278 | 15.0 | 4770 | 0.3063 | 0.9494 |
Framework versions
- Transformers 4.16.2
- Pytorch 2.4.1+cu121
- Datasets 1.16.1
- Tokenizers 0.19.1
- Downloads last month
- 2