YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

fine-tuned bert-base-chinese for intent recognition task on dataset

Usage


from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import TextClassificationPipeline

tokenizer = AutoTokenizer.from_pretrained("nlp-guild/bert-base-chinese-finetuned-intent_recognition-biomedical")
model = AutoModelForSequenceClassification.from_pretrained("nlp-guild/bert-base-chinese-finetuned-intent_recognition-biomedical")
nlp = TextClassificationPipeline(model = model, tokenizer = tokenizer)

label_set = [
'定义',
'病因',
'预防',
'临床表现(病症表现)',
'相关病症',
'治疗方法',
'所属科室',
'传染性',
'治愈率',
'禁忌',
'化验/体检方案',
'治疗时间',
'其他'
]

def readable_results(top_k:int, usr_query:str):
    raw = nlp(usr_query, top_k = top_k)
    def f(x):
        index = int(x['label'][6:])
        x['label'] = label_set[index]
    
    for i in raw:
        f(i)
    return raw
 
 readable_results(3,'得了心脏病怎么办')

'''
[{'label': '治疗方法', 'score': 0.9994503855705261},
 {'label': '其他', 'score': 0.00018375989748165011},
 {'label': '临床表现(病症表现)', 'score': 0.00010841596667887643}]
'''
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.