Swallow-70b-NVE-RP

Important Notice:

For personal and academic use only.

Description

This model is suitable for role-playing and storytelling, but it's not a great model for multi-turn chat.

This was created for personal and academic use only. This merge model uses only fine-tune models of Llama2, but some of the models used include those whose licenses for commercial use are unclear.

If there is a license problem, the rights holder should contact me directly. No license changes will be made due to contact from others.

Test environment

This model was tested using text-generation-webui. I use preset simple-1 and Null preset for Generation.

Recommendation

Use simple-1 settings:

  • temperature: 0.7
  • top_p: 0.9
  • repetition_penalty: 1.15
  • top_k: 20

Tested temperature Range

  • temperature: 0.3 - 1.0

Tested repetition_penalty Range

  • repetition_penalty: 1.0 - 1.15

Prompt template

Swallow Style (Alpaca format)

以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。リクエストを適切に完了するための回答を記述してください。

### 指示:
{instruction}

### 応答:

Although not fully tested, Doctor-Shotgun/lzlv-limarpv3-l2-70b and alac/Waxwing-Storytelling-70B-LoRA prompt styles are also available.

Use the instruct model

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "nitky/Swallow-70b-NVE-RP"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto", load_in_4bit = True)


PROMPT_DICT = {
    "prompt_input": (
        "以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。"
        "リクエストを適切に完了するための回答を記述してください。\n\n"
        "### 指示:\n{instruction}\n\n### 入力:\n{input}\n\n### 応答:"

    ),
    "prompt_no_input": (
        "以下に、あるタスクを説明する指示があります。"
        "リクエストを適切に完了するための回答を記述してください。\n\n"
        "### 指示:\n{instruction}\n\n### 応答:"
    ),
}

def create_prompt(instruction, input=None):
    """
    Generates a prompt based on the given instruction and an optional input.
    If input is provided, it uses the 'prompt_input' template from PROMPT_DICT.
    If no input is provided, it uses the 'prompt_no_input' template.

    Args:
        instruction (str): The instruction describing the task.
        input (str, optional): Additional input providing context for the task. Default is None.

    Returns:
        str: The generated prompt.
    """
    if input:
        # Use the 'prompt_input' template when additional input is provided
        return PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input)
    else:
        # Use the 'prompt_no_input' template when no additional input is provided
        return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)

# Example usage
instruction_example = "以下のトピックに関する詳細な情報を提供してください。"
input_example = "東京工業大学の主なキャンパスについて教えてください"
prompt = create_prompt(instruction_example, input_example)

input_ids = tokenizer.encode(
    prompt,
    add_special_tokens=False,
    return_tensors="pt"
)

tokens = model.generate(
    input_ids.to(device=model.device),
    max_new_tokens=200,
    temperature=0.7,
    top_p=0.9,
    repetition_penalty=1.15,
    top_k=20,
    do_sample=True,
)

out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)

Merge Details

Merge Method

This model was merged using the DARE TIES and the SLERP merge method using tokyotech-llm/Swallow-70b-NVE-instruct-hf as a base.

Models Merged

The following models were included in the merge:

Configuration

The command example:

# please change the path and options according to your environment
mergekit-mega --cuda --lora-merge-cache ~/text-generation-webui/loras/models--alac--Waxwing-Storytelling-70B-LoRA Swallow-70b-NVE-RP.yml ~/text-generation-webui/models

The following YAML configuration was used to produce this model:

models:
  - model: tokyotech-llm/Swallow-70b-NVE-instruct-hf
    # no parameters necessary for base model
  - model: GOAT-AI/GOAT-70B-Storytelling # storytelling
    parameters:
      density: 1
      weight: 0.25
  - model: dreamgen/opus-v0.5-70b # creative roleplay
    parameters:
      density: 1
      weight: 0.25
merge_method: dare_ties
base_model: tokyotech-llm/Swallow-70b-NVE-instruct-hf
dtype: bfloat16
name: Swallow-70b-NVE-RP-base
---
models:
  - model: tokyotech-llm/Swallow-70b-NVE-instruct-hf
    # no parameters necessary for base model
  - model: Doctor-Shotgun/lzlv-limarpv3-l2-70b # roleplay configuration
    parameters:
      density: 1
      weight: 0.25
merge_method: dare_ties
base_model: tokyotech-llm/Swallow-70b-NVE-instruct-hf
dtype: bfloat16
name: Swallow-70b-NVE-RP-flavor
---
slices:
  - sources:
      - model: Swallow-70b-NVE-RP-base
        layer_range: [0, 80]
      - model: Swallow-70b-NVE-RP-flavor
        layer_range: [0, 80]
merge_method: slerp
base_model: Swallow-70b-NVE-RP-base
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5 # fallback for rest of tensors
dtype: bfloat16
name: Swallow-70b-NVE-RP
Downloads last month
16
Safetensors
Model size
69B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nitky/Swallow-70b-NVE-RP