PEFT
PyTorch
mixtral
Generated from Trainer
Edit model card

image/png

15.6b 2expert MoE

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: nisten/shqiponja15
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: iamshnoo/alpaca-cleaned-albanian
    type: alpaca
    shards: 10
  - path: noxneural/lilium_albanicum_eng_alb
    shards: 20
    type:
      field_system: system
      field_instruction: question
      field_output: response
      format: "[INST] {instruction} [/INST]"
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./alora-out

#  - model.layers.2[7-9]+.block_sparse_moe.experts.*
#  - model.layers.3[0-9]+.block_sparse_moe.experts.*
#  - model.layers.2[7-9]+.b
</details><br>

alora-out

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 80
  • total_eval_batch_size: 40
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for nisten/shqiponja-15b-v1

Unable to build the model tree, the base model loops to the model itself. Learn more.

Datasets used to train nisten/shqiponja-15b-v1