File size: 8,714 Bytes
24f4359 2328b9e 24f4359 2328b9e 24f4359 2328b9e 24f4359 2328b9e 24f4359 2328b9e 24f4359 98c4584 24f4359 ee3adb4 24f4359 8f2aa0c 24f4359 3c14459 24f4359 f4161a7 24f4359 98c4584 24f4359 4c1bc0e 24f4359 4c1bc0e 24f4359 98c4584 24f4359 a49ad31 24f4359 98c4584 24f4359 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
---
license: apache-2.0
datasets:
- nicholasKluge/portuguese-corpus-v3
language:
- pt
metrics:
- perplexity
library_name: transformers
pipeline_tag: text-generation
tags:
- text-generation-inference
widget:
- text: Astronomia é uma ciência natural que estuda
example_title: Exemplo
- text: Em um achado chocante, o cientista descobriu um
example_title: Exemplo
- text: Python é uma linguagem de
example_title: Exemplo
- text: O Gato de Schrödinger é uma experiência mental
example_title: Exemplo
inference:
parameters:
repetition_penalty: 1.5
temperature: 0.5
top_k: 50
top_p: 0.5
max_new_tokens: 200
co2_eq_emissions:
emissions: 5.6
source: CodeCarbon
training_type: pre-training
geographical_location: Germany
hardware_used: NVIDIA A100-SXM4-40GB
---
# Teeny-tiny-llama-162m (Portuguese)
<img src="./logo-round.png" alt="A little llama wearing a mushroom hat and a monocle." height="400">
Teeny-tiny-llama-162m is a compact language model based on the Llama 2 architecture ([Tiny-llama implementation](https://huggingface.co/TinyLlama)). This model is designed to deliver efficient natural language processing capabilities (in Portuguese-BR) while being resource-conscious.
Teeny-tiny-llama has been trained by leveraging scaling laws to determine the optimal number of tokens per parameter while incorporating preference pre-training.
- **Compact Design:** Teeny-tiny-llama is a downsized version of the Llama 2 architecture, making it suitable for applications with limited computational resources.
- **Optimized Scaling:** The model has been pre-trained using scaling logs to identify the ideal token-to-parameter ratio.
- **Custom Portuguese Dataset:** Teeny-tiny-llama has been trained on a custom Portuguese dataset. This dataset includes diverse linguistic contexts and preference pre-training, allowing the model to better cater to Portuguese language nuances and be better suited for fine-tuning tasks like instruction-tuning.
## Details
- **Size:** 162 million parameters
- **Dataset:** [Portuguese-Corpus-v3](https://huggingface.co/datasets/nicholasKluge/portuguese-corpus-v3)
- **Language:** Portuguese
- **Number of steps:** 457,969
- **Batch size:** 4
- **Optimizer:** `torch.optim.AdamW` (warmup_ratio = 0.01, learning_rate = 6e-4, epsilon = 1e-8)
- **GPU:** 1 NVIDIA A100-SXM4-40GB
- **Training time**: ~ 36 hours
- **Emissions:** 5.6 KgCO2 (Germany)
- **Total Energy Consumption:** 15.5 kWh
This repository has the [source code](https://github.com/Nkluge-correa/Aira) used to train this model.
## Training Set-up
| Section | Setting | Value |
|----------------|-----------------------------|--------------------------------------|
| Model args. | vocab_size | 32000 |
| | hidden_size | 768 |
| | intermediate_size | 3072 |
| | max_position_embeddings | 2048 |
| | num_attention_heads | 12 |
| | num_hidden_layers | 12 |
| | num_key_value_heads | 12 |
| | torch_dtype | "float32" |
| Data args. | dataset_name | "nicholasKluge/portuguese-corpus-v3" |
| | dataset_split | "train" |
| | train_num_samples | 1831873 |
| | val_num_samples | 18000 |
| | block_size | 2048 |
| Training args. | evaluation_strategy | "steps" |
| | eval_steps | 100000 |
| | per_device_train_batch_size | 4 |
| | per_device_eval_batch_size | 4 |
| | gradient_accumulation_steps | 1 |
| | learning_rate | 0.0006 |
| | adam_epsilon | 0.00000001 |
| | weight_decay | 0.01 |
| | lr_scheduler_type | "cosine" |
| | warmup_ratio | 0.01 |
| | num_train_epochs | 1 |
| | gradient_checkpointing | false |
| | seed | 42 |
| | mixed_precision | 'no' |
| | checkpointing_steps | 22000 |
| | tf32 | true |
## Usage
```python
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("text-generation", model="nicholasKluge/Teeny-tiny-llama-162m")
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("nicholasKluge/Teeny-tiny-llama-162m")
model = AutoModelForCausalLM.from_pretrained("nicholasKluge/Teeny-tiny-llama-162m")
```
## Limitations
🤥 Generative AI models, like LLMs used for text generation/conversation or GANs for image generation, can produce content that can be mistaken for truth but is, in fact, misleading or entirely false, given the model's tendency to output hallucinations. Such models can generate deceptive visuals, human-like textual content, music, or combined media that might seem genuine at first glance.
🤬 Machine learning systems can inherit social and historical stereotypes from the data used to train them. Given these biases, models can be prone to produce toxic content, that is, text, images, videos, or comments, that is harmful, offensive, or detrimental to individuals, groups, or communities. Also, models that automate decision-making can have biases against certain groups, affecting people based on sensitive attributes in an unjust manner.
## Evaluations
| Steps | Evaluation Loss | Perplexity | Total Energy Consumption | Emissions |
|---------|-----------------|------------|--------------------------|------------|
| 100.000 | 3.19 | 24.52 | 3.75 kWh | 1.28 CO2eq |
| 200.000 | 3.02 | 20.58 | 7.51 kWh | 2.56 CO2eq |
| 300.000 | 2.83 | 16.98 | 11.25 kWh | 3.84 CO2eq |
| 400.000 | 2.79 | 16.41 | 14.52 kWh | 5.11 CO2eq |
## Benchmarks
| Models | Average | [ARC](https://arxiv.org/abs/1803.05457) | [Hellaswag](https://arxiv.org/abs/1905.07830) | [MMLU](https://arxiv.org/abs/2009.03300) | [TruthfulQA](https://arxiv.org/abs/2109.07958) |
|-------------------------------------------------------------------------------------|---------|-----------------------------------------|-----------------------------------------------|------------------------------------------|------------------------------------------------|
| [Gpt2-portuguese-small](https://huggingface.co/pierreguillou/gpt2-small-portuguese) | 30.22 | 22.48 | 29.62 | 27.36 | 41.44 |
* Evaluations on benchmarks were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)). Thanks to [Laiviet](https://github.com/laiviet/lm-evaluation-harness) for translating some of the tasks in the LM-Evaluation-Harness.
## Cite as 🤗
```latex
@misc{nicholas22llama,
doi = {10.5281/zenodo.6989727},
url = {https://huggingface.co/nicholasKluge/Teeny-tiny-llama-162m},
author = {Nicholas Kluge Corrêa},
title = {Teeny-tiny-llama},
year = {2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
}
```
## License
The `Teeny-tiny-llama-162m` is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details. |