Commit
·
98c4584
1
Parent(s):
462feae
Update README.md
Browse files
README.md
CHANGED
@@ -43,7 +43,7 @@ inference:
|
|
43 |
top_p: 0.5
|
44 |
max_new_tokens: 200
|
45 |
co2_eq_emissions:
|
46 |
-
emissions:
|
47 |
source: CodeCarbon
|
48 |
training_type: pre-training
|
49 |
geographical_location: Germany
|
@@ -75,8 +75,8 @@ Teeny-tiny-llama has been trained by leveraging scaling laws to determine the op
|
|
75 |
- **Optimizer:** `torch.optim.AdamW` (warmup_ratio = 0.01, learning_rate = 6e-4, epsilon = 1e-8)
|
76 |
- **GPU:** 1 NVIDIA A100-SXM4-40GB
|
77 |
- **Training time**: ~ 36 hours
|
78 |
-
- **Emissions:**
|
79 |
-
- **Total Energy Consumption:**
|
80 |
|
81 |
This repository has the [source code](https://github.com/Nkluge-correa/Aira) used to train this model.
|
82 |
|
@@ -138,18 +138,20 @@ model = AutoModelForCausalLM.from_pretrained("nicholasKluge/Teeny-tiny-llama-162
|
|
138 |
|
139 |
## Evaluations
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
| Models | Average | [ARC](https://arxiv.org/abs/1803.05457) | [Hellaswag](https://arxiv.org/abs/1905.07830) | [MMLU](https://arxiv.org/abs/2009.03300) | [TruthfulQA](https://arxiv.org/abs/2109.07958) |
|
142 |
|-------------------------------------------------------------------------------------|---------|-----------------------------------------|-----------------------------------------------|------------------------------------------|------------------------------------------------|
|
143 |
| [Gpt2-portuguese-small](https://huggingface.co/pierreguillou/gpt2-small-portuguese) | 30.22 | 22.48 | 29.62 | 27.36 | 41.44 |
|
144 |
|
145 |
-
* Evaluations were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)). Thanks to [Laiviet](https://github.com/laiviet/lm-evaluation-harness) for translating some of the tasks in the LM-Evaluation-Harness.
|
146 |
-
|
147 |
-
| Steps | Evaluation Loss | Perplexity | Total Energy Consumption |
|
148 |
-
|---------|-----------------|------------|--------------------------|
|
149 |
-
| 100.000 | 3.19 | 24.52 | 3.75 kWh |
|
150 |
-
| 200.000 | 3.02 | 20.58 | 7.51 kWh |
|
151 |
-
| 300.000 | 2.83 | 16.98 | 11.25 kWh |
|
152 |
-
| 400.000 | 2.79 | 16.41 | 30.20 kWh |
|
153 |
|
154 |
## Cite as 🤗
|
155 |
|
|
|
43 |
top_p: 0.5
|
44 |
max_new_tokens: 200
|
45 |
co2_eq_emissions:
|
46 |
+
emissions: 5.6
|
47 |
source: CodeCarbon
|
48 |
training_type: pre-training
|
49 |
geographical_location: Germany
|
|
|
75 |
- **Optimizer:** `torch.optim.AdamW` (warmup_ratio = 0.01, learning_rate = 6e-4, epsilon = 1e-8)
|
76 |
- **GPU:** 1 NVIDIA A100-SXM4-40GB
|
77 |
- **Training time**: ~ 36 hours
|
78 |
+
- **Emissions:** 5.6 KgCO2 (Germany)
|
79 |
+
- **Total Energy Consumption:** 15.5 kWh
|
80 |
|
81 |
This repository has the [source code](https://github.com/Nkluge-correa/Aira) used to train this model.
|
82 |
|
|
|
138 |
|
139 |
## Evaluations
|
140 |
|
141 |
+
| Steps | Evaluation Loss | Perplexity | Total Energy Consumption | Emissions |
|
142 |
+
|---------|-----------------|------------|--------------------------|------------|
|
143 |
+
| 100.000 | 3.19 | 24.52 | 3.75 kWh | 1.28 CO2eq |
|
144 |
+
| 200.000 | 3.02 | 20.58 | 7.51 kWh | 2.56 CO2eq |
|
145 |
+
| 300.000 | 2.83 | 16.98 | 11.25 kWh | 3.84 CO2eq |
|
146 |
+
| 400.000 | 2.79 | 16.41 | 14.52 kWh | 5.11 CO2eq |
|
147 |
+
|
148 |
+
## Benchmarks
|
149 |
+
|
150 |
| Models | Average | [ARC](https://arxiv.org/abs/1803.05457) | [Hellaswag](https://arxiv.org/abs/1905.07830) | [MMLU](https://arxiv.org/abs/2009.03300) | [TruthfulQA](https://arxiv.org/abs/2109.07958) |
|
151 |
|-------------------------------------------------------------------------------------|---------|-----------------------------------------|-----------------------------------------------|------------------------------------------|------------------------------------------------|
|
152 |
| [Gpt2-portuguese-small](https://huggingface.co/pierreguillou/gpt2-small-portuguese) | 30.22 | 22.48 | 29.62 | 27.36 | 41.44 |
|
153 |
|
154 |
+
* Evaluations on benchmarks were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)). Thanks to [Laiviet](https://github.com/laiviet/lm-evaluation-harness) for translating some of the tasks in the LM-Evaluation-Harness.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
## Cite as 🤗
|
157 |
|