Edit model card

favs_token_classification_v2_uncased

This model is a fine-tuned version of bert-base-uncased on the token_classification_v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5006
  • Precision: 0.6599
  • Recall: 0.7823
  • F1: 0.7159
  • Accuracy: 0.8547

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
2.2447 1.0 13 1.9089 0.2 0.0968 0.1304 0.3576
1.9589 2.0 26 1.5848 0.2734 0.2823 0.2778 0.4477
1.729 3.0 39 1.3636 0.3128 0.4516 0.3696 0.6134
1.4278 4.0 52 1.1854 0.4302 0.5968 0.5 0.7122
1.3046 5.0 65 1.0341 0.5183 0.6855 0.5903 0.7413
1.1599 6.0 78 0.9163 0.5188 0.6694 0.5845 0.75
0.9263 7.0 91 0.8235 0.5399 0.7097 0.6132 0.7645
0.8721 8.0 104 0.7627 0.5176 0.7097 0.5986 0.7733
0.7879 9.0 117 0.7070 0.5366 0.7097 0.6111 0.7849
0.6881 10.0 130 0.6575 0.5427 0.7177 0.6181 0.7936
0.6414 11.0 143 0.6076 0.5660 0.7258 0.6360 0.8110
0.6096 12.0 156 0.5804 0.6090 0.7661 0.6786 0.8285
0.5812 13.0 169 0.5661 0.6282 0.7903 0.7000 0.8343
0.5006 14.0 182 0.5503 0.6144 0.7581 0.6787 0.8285
0.5289 15.0 195 0.5366 0.6267 0.7581 0.6861 0.8372
0.4447 16.0 208 0.5222 0.6419 0.7661 0.6985 0.8459
0.435 17.0 221 0.5120 0.6599 0.7823 0.7159 0.8517
0.4454 18.0 234 0.5058 0.6667 0.7903 0.7232 0.8547
0.422 19.0 247 0.5013 0.6599 0.7823 0.7159 0.8547
0.4285 20.0 260 0.5006 0.6599 0.7823 0.7159 0.8547

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.1
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results