Edit model card

bert-base-cased-NER-favsbot-no-apostrophe-2022-11-07

This model is a fine-tuned version of bert-base-cased on the favsbot dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1169
  • Precision: 0.8276
  • Recall: 0.96
  • F1: 0.8889
  • Accuracy: 0.9444

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 10 1.6302 0.0 0.0 0.0 0.5972
No log 2.0 20 1.0453 0.6667 0.08 0.1429 0.6389
No log 3.0 30 0.7286 0.8421 0.64 0.7273 0.8472
No log 4.0 40 0.5296 0.8 0.8 0.8000 0.8889
No log 5.0 50 0.3960 0.8214 0.92 0.8679 0.9306
No log 6.0 60 0.2987 0.8214 0.92 0.8679 0.9306
No log 7.0 70 0.2424 0.8276 0.96 0.8889 0.9444
No log 8.0 80 0.2151 0.8276 0.96 0.8889 0.9444
No log 9.0 90 0.1815 0.8276 0.96 0.8889 0.9444
No log 10.0 100 0.1675 0.8276 0.96 0.8889 0.9444
No log 11.0 110 0.1504 0.8276 0.96 0.8889 0.9444
No log 12.0 120 0.1410 0.8276 0.96 0.8889 0.9444
No log 13.0 130 0.1350 0.8276 0.96 0.8889 0.9444
No log 14.0 140 0.1281 0.8276 0.96 0.8889 0.9444
No log 15.0 150 0.1239 0.8276 0.96 0.8889 0.9444
No log 16.0 160 0.1190 0.8276 0.96 0.8889 0.9444
No log 17.0 170 0.1187 0.8276 0.96 0.8889 0.9444
No log 18.0 180 0.1180 0.8276 0.96 0.8889 0.9444
No log 19.0 190 0.1170 0.8276 0.96 0.8889 0.9444
No log 20.0 200 0.1169 0.8276 0.96 0.8889 0.9444

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.1
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results