Visualize in Weights & Biases

dinov2_Liveness_detection_v2.2.3

This model is a fine-tuned version of nguyenkhoa/dinov2_Liveness_detection_v2.2.2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0224
  • Accuracy: 0.9932
  • F1: 0.9932
  • Recall: 0.9932
  • Precision: 0.9933

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 768
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
0.0562 0.5872 64 0.0385 0.9860 0.9860 0.9860 0.9860
0.0328 1.1743 128 0.0350 0.9884 0.9884 0.9884 0.9885
0.0251 1.7615 192 0.0311 0.9879 0.9879 0.9879 0.9879
0.0185 2.3486 256 0.0296 0.9895 0.9895 0.9895 0.9895
0.0166 2.9358 320 0.0328 0.9897 0.9897 0.9897 0.9898
0.0109 3.5229 384 0.0336 0.9906 0.9906 0.9906 0.9907
0.0098 4.1101 448 0.0249 0.9917 0.9917 0.9917 0.9917
0.0069 4.6972 512 0.0224 0.9932 0.9932 0.9932 0.9933

Evaluate results

  • APCER: 0.1827
  • BPCER: 0.0089
  • ACER: 0.0958
  • Accuracy: 0.8700
  • F1: 0.8975
  • Recall: 0.9911
  • Precision: 0.7026

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
6
Safetensors
Model size
22.1M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for nguyenkhoa/dinov2_Liveness_detection_v2.2.3