Visualize in Weights & Biases

dinov2_Liveness_detection_v2.2

This model is a fine-tuned version of facebook/dinov2-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1307
  • Accuracy: 0.9781
  • F1: 0.9781
  • Recall: 0.9781
  • Precision: 0.9783

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
0.3279 0.2048 128 0.2858 0.8749 0.8772 0.8749 0.8773
0.2389 0.4096 256 0.2696 0.8881 0.8819 0.8881 0.9196
0.186 0.6144 384 0.1614 0.9383 0.9386 0.9383 0.9381
0.2048 0.8192 512 0.1568 0.9404 0.9411 0.9404 0.9415
0.1662 1.024 640 0.1474 0.9426 0.9433 0.9426 0.9436
0.1257 1.2288 768 0.1186 0.9578 0.9573 0.9578 0.9604
0.1215 1.4336 896 0.1202 0.9556 0.9560 0.9556 0.9561
0.0917 1.6384 1024 0.1045 0.9611 0.9611 0.9611 0.9611
0.1256 1.8432 1152 0.0971 0.9633 0.9630 0.9633 0.9645
0.0676 2.048 1280 0.1524 0.9487 0.9477 0.9487 0.9545
0.0458 2.2528 1408 0.1149 0.9641 0.9643 0.9641 0.9642
0.0462 2.4576 1536 0.1233 0.9630 0.9632 0.9630 0.9631
0.0453 2.6624 1664 0.1030 0.9671 0.9670 0.9671 0.9679
0.0631 2.8672 1792 0.0896 0.967 0.9672 0.967 0.9671
0.0358 3.072 1920 0.0966 0.9735 0.9734 0.9735 0.9738
0.0229 3.2768 2048 0.1250 0.9675 0.9676 0.9675 0.9676
0.0272 3.4816 2176 0.1148 0.9691 0.9693 0.9691 0.9692
0.0253 3.6864 2304 0.1130 0.9757 0.9755 0.9757 0.9761
0.0249 3.8912 2432 0.1091 0.9716 0.9717 0.9716 0.9715
0.0049 4.096 2560 0.1420 0.9756 0.9756 0.9756 0.9755
0.0159 4.3008 2688 0.1423 0.9775 0.9774 0.9775 0.9777
0.0026 4.5056 2816 0.1454 0.9774 0.9773 0.9774 0.9776
0.0059 4.7104 2944 0.1445 0.9785 0.9785 0.9785 0.9785
0.0011 4.9152 3072 0.1307 0.9781 0.9781 0.9781 0.9783

Evaluate results

  • Accuaracy: 0.81

  • F1: 0.86

  • Recall: 0.85

  • Precision: 0.65

  • APCER: 0.2001

  • BPCER: 0.1458

  • ACER: 0.1729

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
12
Safetensors
Model size
22.1M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for nguyenkhoa/dinov2_Liveness_detection_v2.2

Finetuned
(7)
this model