DeepSparse Sparse LLMs
Collection
Useful LLMs for DeepSparse where we've pruned at least 50% of the weights!
•
10 items
•
Updated
•
5
This repo contains model files for Nous-Hermes-Llama2-7b optimized for DeepSparse, a CPU inference runtime for sparse models.
This model was quantized and pruned with SparseGPT, using SparseML.
Install DeepSparse LLM for fast inference on CPUs:
pip install deepsparse-nightly[llm]
Run in a Python pipeline:
from deepsparse import TextGeneration
prompt = "How to make banana bread?"
formatted_prompt = f"### Instruction\n{prompt}\n### Response:\n"
model = TextGeneration(model_path="hf:nm-testing/Nous-Hermes-llama-2-7b-pruned50-quant-ds")
print(model(formatted_prompt, max_new_tokens=200).generations[0].text)
"""
To make banana bread, start by preheating the oven to 350 degrees Fahrenheit.
In a bowl, mix together 1 cup of flour, 1 cup of sugar, and 1 teaspoon of baking soda.
Then, add 1 cup of milk and 1 cup of mashed banana.
Mix well and pour the mixture into a greased pan.
Bake the bread for about 45 minutes or until a toothpick inserted comes out clean.
"""
### Instruction:
<prompt>
### Response:
<leave a newline blank for model to respond>
For details on how this model was sparsified, see the recipe.yaml
in this repo and follow the instructions below.
git clone https://github.com/neuralmagic/sparseml
pip install -e "sparseml[transformers]"
python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py NousResearch/Nous-Hermes-llama-2-7b open_platypus --precision float16 --recipe recipe.yaml --save True
python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment
cp deployment/model.onnx deployment/model-orig.onnx
Run this kv-cache injection to speed up the model at inference by caching the Key and Value states:
import os
import onnx
from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector
input_file = "deployment/model-orig.onnx"
output_file = "deployment/model.onnx"
model = onnx.load(input_file, load_external_data=False)
model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model)
onnx.save(model, output_file)
print(f"Modified model saved to: {output_file}")
Follow the instructions on our One Shot With SparseML page for a step-by-step guide for performing one-shot quantization of large language models.
For further support, and discussions on these models and AI in general, join Neural Magic's Slack Community
Base model
NousResearch/Nous-Hermes-llama-2-7b