KDRSSC_ViT2TinyViT

This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4414
  • Accuracy: 0.9381
  • Precision: 0.9385
  • Recall: 0.9385
  • F1: 0.9382

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.9089 1.0 148 0.5624 0.906 0.9072 0.9014 0.8987
0.4816 2.0 296 0.4759 0.94 0.9411 0.9389 0.9382
0.3958 3.0 444 0.4354 0.952 0.9503 0.9510 0.9496
0.3574 4.0 592 0.4273 0.949 0.9475 0.9470 0.9460
0.3406 5.0 740 0.4132 0.955 0.9548 0.9522 0.9523
0.3341 6.0 888 0.4164 0.951 0.9481 0.9503 0.9477
0.3314 7.0 1036 0.4087 0.957 0.9545 0.9538 0.9530
0.3302 8.0 1184 0.4075 0.955 0.9528 0.9517 0.9512
0.3295 9.0 1332 0.4067 0.956 0.9533 0.9533 0.9522
0.3292 10.0 1480 0.4071 0.956 0.9534 0.9533 0.9522

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
5.53M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for neuralhaven/KDRSSC_ViT2TinyViT

Finetuned
(14)
this model
Finetunes
1 model