Summarization
Chinese
English

You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Multi_Turn_Conversation_Summary-V0

neofung/Multi_Turn_Conversation_Summary-V0 是用于RAG 多轮对话场景中,将用户的历史对话记录总结为方便召回的文本,提高召回质量和效率。

模型数据组织和训练方式

  1. 训练数据从YeungNLP/moss-003-sft-data中使用langdetect筛选zhen的数据得到 。

  2. 使用01-ai/Yi-34B-Chat 对用户对话进行总结,得到 neofung/moss-003-sft-data-summary

  3. 使用LoRA,在基座模型01-ai/Yi-6B 上进行Supervised Fine-Tuning,得到最终的模型。

  4. 训练平台AutoDL

使用的LoRA进行训练,而不是全参数训练,是因为希望在实际场景中,不同的Adapter服务不同的场景Multi Adapter support,不需要为本场景耗费资源部署模型实例。

使用方法

from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "01-ai/Yi-6B"

tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
use_safetensors=False,
device_map="auto",
torch_dtype='auto',
trust_remote_code=True
).eval()

inputs = tokenizer('登鹳雀楼->王之涣\n夜雨寄北->', return_tensors='pt')

outputs = model.generate(
inputs.input_ids.cuda(),
max_new_tokens=512,
streamer=None,
eos_token_id=tokenizer.convert_tokens_to_ids("\n"),
do_sample=True,
repetition_penalty=1.3,
no_repeat_ngram_size=5,
temperature=0.7,
top_k=40,
top_p=0.8,
)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))

## 登鹳雀楼->王之涣
## 夜雨寄北->李商隐 

from peft import PeftModel

model = PeftModel.from_pretrained(model, "neofung/Multi_Turn_Conversation_Summary-V0", trust_remote_code=True)

prompt = """<|im_start|>[ { "human": "如何保障工作中遵循正确的安全准则?", "assistant": "为了保障工作中遵循正确的安全准则,以下是一些建议:\n\n1.了解相关安全规定和标准:了解相关的安全规定和标准,并遵守它们。这可以包括公司和政府的安全标准,以及行业标准和最佳实践。\n\n2.培训和教育:确保您和您的同事接受了必要的培训和教育,以了解正确的安全准则和行为。\n\n3.使用正确的工具和设备:确保您使用正确的工具和设备,并且它们得到了正确的维护和保养。\n\n4.个人防护装备:确保您和您的同事穿戴正确的个人防护装备,如安全鞋、透明眼镜或面罩、手套等。\n\n5.创建一个安全文化:鼓励个人对安全的责任感和意识,并创建一个安全文化,使人们始终关注他们自己和他人的安全。\n\n6.持续监测和改进:持续监测和改进安全准则和程序,以确保它们保持最新,并适应变化的情况。\n\n这些措施可以帮助您和您的同事在工作中保障正确的安全准则,确保您的工作场所是一个安全的环境。" }, { "human": "如何应对突发紧急情况?", "assistant": "突发紧急情况可能会在任何时间发生,为了应对这些情况,以下是一些建议:\n\n1.保持冷静:保持冷静和清醒,以便能够更好地应对情况。\n\n2.评估情况:评估紧急情况的性质和范围,以便了解应该采取哪些行动。\n\n3.触发应急计划:如果您的机构或公司有应急计划,立即触发它,并按照计划的步骤行动。\n\n4.联系相关人员:通知必要的人员,例如紧急服务、管理层或其他相关人员,并与他们保持联系。\n\n5.遵循安全准则:在处理紧急情况时,请遵循正确的安全准则,确保自己和其他人的安全。\n\n6.提供及时信息:尽快向相关人员提供准确的信息,以便他们能够做出正确的决策。\n\n7.合作应对:与其他人合作应对紧急情况并相互支持。\n\n总之,应对突发紧急情况需要保持冷静和清醒,评估情况并采取适当的行动。同时,需要遵循正确的安全准则,并与其他人合作应对紧急情况。" }, { "human": "在网络安全方面,如何避免遭受黑客攻击?", "assistant": "以下是一些避免遭受黑客攻击的建议:\n\n1.更新安全软件:确保您的操作系统、应用程序和安全软件是最新的,并随时更新它们。这可以帮助您及时发现和修复安全漏洞。\n\n2.使用强密码:使用强密码,包括字母、数字和特殊字符。不要使用容易猜测的密码,如生日、姓名或常用单词。\n\n3.使用多因素身份验证:使用多因素身份验证来增加账户的安全性,例如发送短信验证码或使用指纹识别。\n\n4.小心附件和链接:不要打开未知的附件或链接,因为它们可能包含恶意软件。\n\n5.备份重要文件:定期备份重要文件,并将其存储在安全的位置。\n\n6.保护个人信息:不要在互联网上公开个人信息,例如出生日期、地址或社交安全号码。\n\n7.使用加密连接:在访问敏感信息时,使用加密连接,如HTTPS。\n\n8.教育员工:向员工提供网络安全培训,并确保他们了解正确的安全措施和行为。\n\n总之,避免遭受黑客攻击需要采取多种措施,包括更新安全软件、使用强密码、使用多因素身份验证、小心附件和链接、备份重要文件、保护个人信息、使用加密连接以及教育员工。这些措施可以帮助您保护个人信息和数据免受黑客攻击。" }, { "human": "如何确保网络连接的安全性?", "assistant": "以下是一些确保网络连接安全性的建议:\n\n1.使用加密连接:使用加密连接,如HTTPS,以确保数据传输过程中不被窃听或篡改。\n\n2.使用防病毒软件:安装和更新防病毒软件,可以帮助检测和清除恶意软件。\n\n3.使用防火墙:使用防火墙保护网络和设备,可以帮助阻止未经授权的访问和攻击。\n\n4.禁止未经授权的访问:禁止未经授权的访问,包括限制网络访问和设备访问权限。\n\n5.定期更新操作系统和应用程序:定期更新操作系统和应用程序,以修复安全漏洞和缺陷。\n\n6.使用强密码:使用强密码,包括字母、数字和特殊字符,并定期更改密码。\n\n7.控制访问:控制访问网络和设备的人员,仅授权人员可访问重要资源。\n\n8.教育员工:向员工提供网络安全培训,并确保他们了解正确的安全措施和行为。\n\n总之,确保网络连接的安全性需要采取多种措施,包括使用加密连接、使用防病毒软件、使用防火墙、禁止未经授权的访问、定期更新操作系统和应用程序、使用强密码、控制访问和教育员工。这些措施可以帮助您保护网络和设备免受未经授权的访问和攻击。" }, { "human": "对于金融机构来说,如何保护客户的隐私和数据安全?", "assistant": "金融机构需要对客户的隐私和数据安全高度重视,以下是一些保护客户隐私和数据安全的建议:\n\n1.遵守合规要求:确保遵守所有适用的合规要求和监管标准,包括数据隐私法规和安全标准。\n\n2.加强身份验证:采用多因素身份验证,例如使用短信验证码、指纹识别等,以确保客户身份的真实性。\n\n3.加密敏感数据:使用加密技术对敏感数据进行加密,以保护客户信息不被未经授权的人员获得。\n\n4.建立安全控制:建立安全控制,包括访问控制、安全审计和安全事件响应,以保护客户信息的安全性。\n\n5.教育员工:向员工提供网络安全培训,并确保他们了解正确的安全措施和行为。\n\n6.定期测试:定期进行安全测试和漏洞扫描,以发现和修复潜在的安全漏洞。\n\n7.建立应急计划:建立应急计划,并对其进行定期测试,以确保在紧急情况下能够及时响应和恢复。\n\n总之,保护客户隐私和数据安全需要采取多种措施,包括遵守合规要求、加强身份验证、加密敏感数据、建立安全控制、教育员工、定期测试和建立应急计划。这些措施可以帮助金融机构保护客户信息的安全性和隐私。" } ]<|im_end|> <|im_start|>"""

input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
outputs = model.generate(input_ids=input_ids, max_new_tokens=64, eos_token_id=0)
print(tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True))

# 用户问题主要集中在网络安全、数据安全、隐私保护等方面。
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Dataset used to train neofung/Multi_Turn_Conversation_Summary-V0