Edit model card

wav2vec2-tcrs

This model is a fine-tuned version of facebook/wav2vec2-large-lv60 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9550
  • Wer: 1.0657

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
13.6613 3.38 500 3.2415 1.0
2.9524 6.76 1000 3.0199 1.0
2.9425 10.14 1500 3.0673 1.0
2.9387 13.51 2000 3.0151 1.0
2.9384 16.89 2500 3.0320 1.0
2.929 20.27 3000 2.9691 1.0
2.9194 23.65 3500 2.9596 1.0
2.9079 27.03 4000 2.9279 1.0
2.8957 30.41 4500 2.9647 1.0
2.8385 33.78 5000 2.8114 1.0193
2.6546 37.16 5500 2.6744 1.0983
2.5866 40.54 6000 2.6192 1.1071
2.5475 43.92 6500 2.5777 1.0950
2.5177 47.3 7000 2.5845 1.1220
2.482 50.68 7500 2.5730 1.1264
2.4343 54.05 8000 2.5722 1.0955
2.3754 57.43 8500 2.5781 1.1353
2.3055 60.81 9000 2.6177 1.0972
2.2446 64.19 9500 2.6351 1.1027
2.1625 67.57 10000 2.6924 1.0756
2.1078 70.95 10500 2.6817 1.0795
2.0366 74.32 11000 2.7629 1.0657
1.9899 77.7 11500 2.7972 1.0845
1.9309 81.08 12000 2.8450 1.0734
1.8861 84.46 12500 2.8703 1.0668
1.8437 87.84 13000 2.9308 1.0917
1.8192 91.22 13500 2.9298 1.0701
1.7952 94.59 14000 2.9488 1.0685
1.7745 97.97 14500 2.9550 1.0657

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.9.1
  • Datasets 1.18.3
  • Tokenizers 0.10.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.