Edit model card

llama-3-sauce-v1-8B

This model is based on Llama-3-8b, and is governed by META LLAMA 3 COMMUNITY LICENSE AGREEMENT

This is a bad finetune on llama-3-bophades-v1-8B using various DPO sets.

Method

Finetuned using an A100 on Google Colab.

Fine-tune a Mistral-7b model with Direct Preference Optimization - Maxime Labonne

Configuration

Dataset preparation:

def chatml_format(example):
    # Initialize formatted system message
    system = ""

    # Check if 'system' field exists and is not None
    if example.get('system'):
        message = {"role": "system", "content": example['system']}
        system = tokenizer.apply_chat_template([message], tokenize=False)

    # Format instruction
    message = {"role": "user", "content": example['prompt']}
    prompt = tokenizer.apply_chat_template([message], tokenize=False, add_generation_prompt=True)

    # Format chosen answer
    chosen = example['chosen'] + "<|im_end|>\n"

    # Format rejected answer
    rejected = example['rejected'] + "<|im_end|>\n"

    return {
        "prompt": system + prompt,
        "chosen": chosen,
        "rejected": rejected,
    }

# Array of datasets to concat
ds = [
    "jondurbin/truthy-dpo-v0.1",
    "ResplendentAI/NSFW_RP_Format_DPO",
    "jondurbin/gutenberg-dpo-v0.1",
    "flammenai/Date-DPO-v1"
]

# load_dataset and combine all
loaded_datasets = [load_dataset(dataset_name, split='train') for dataset_name in ds]
dataset = concatenate_datasets(loaded_datasets)

# Save columns
original_columns = dataset.column_names

# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"

# Format dataset
dataset = dataset.map(
    chatml_format,
    remove_columns=original_columns
)

LoRA, model, and training settings:

# LoRA configuration
peft_config = LoraConfig(
    r=16,
    lora_alpha=16,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)
# Model to fine-tune
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True
)
model.config.use_cache = False
# Reference model
ref_model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True
)
# Training arguments
training_args = TrainingArguments(
    per_device_train_batch_size=2,
    gradient_accumulation_steps=8,
    gradient_checkpointing=True,
    learning_rate=5e-5,
    lr_scheduler_type="cosine",
    max_steps=420,
    save_strategy="no",
    logging_steps=1,
    output_dir=new_model,
    optim="paged_adamw_32bit",
    warmup_steps=100,
    bf16=True,
    report_to="wandb",
)
# Create DPO trainer
dpo_trainer = DPOTrainer(
    model,
    ref_model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=tokenizer,
    peft_config=peft_config,
    beta=0.1,
    max_prompt_length=2048,
    max_length=4096,
    force_use_ref_model=True
)
# Fine-tune model with DPO
dpo_trainer.train()
Downloads last month
4
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nbeerbower/llama-3-sauce-v1-8B

Finetuned
(2)
this model
Finetunes
2 models
Merges
1 model
Quantizations
1 model

Datasets used to train nbeerbower/llama-3-sauce-v1-8B

Collection including nbeerbower/llama-3-sauce-v1-8B