nyt_ingredients-crf-tagger-paraphrase-MiniLM-L3-v2
This model is a fine-tuned version of sentence-transformers/paraphrase-MiniLM-L3-v2 on the nyt_ingredients dataset. It achieves the following results on the evaluation set:
- Loss: 11.3870
- Comment: {'precision': 0.018842530282637954, 'recall': 0.010174418604651164, 'f1': 0.01321378008494573, 'number': 1376}
- Name: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1758}
- Qty: {'precision': 0.1499119991717569, 'recall': 0.9986206896551724, 'f1': 0.26068953101089204, 'number': 1450}
- Range End: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 14}
- Unit: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1163}
- Overall Precision: 0.1405
- Overall Recall: 0.2538
- Overall F1: 0.1809
- Overall Accuracy: 0.1528
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Comment | Name | Qty | Range End | Unit | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 54 | 13.0360 | {'precision': 0.003246753246753247, 'recall': 0.0007267441860465116, 'f1': 0.001187648456057007, 'number': 1376} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1758} | {'precision': 0.142309205350118, 'recall': 0.9979310344827587, 'f1': 0.24909622998794975, 'number': 1450} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 14} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1163} | 0.1382 | 0.2513 | 0.1784 | 0.1432 |
No log | 2.0 | 108 | 11.3870 | {'precision': 0.018842530282637954, 'recall': 0.010174418604651164, 'f1': 0.01321378008494573, 'number': 1376} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1758} | {'precision': 0.1499119991717569, 'recall': 0.9986206896551724, 'f1': 0.26068953101089204, 'number': 1450} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 14} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1163} | 0.1405 | 0.2538 | 0.1809 | 0.1528 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
- Downloads last month
- 8