Intro
Activation Beacon is a plug-in module to transformer-based LLMs that enables effective, efficient, and flexible compression of long contexts.
Environment
pip install transformers
pip install flash-attn --no-build-isolation
Usage
import json
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "namespace-Pt/beacon-qwen-2-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2"
)
model = model.cuda().eval()
with torch.no_grad():
# short context
messages = [{"role": "user", "content": "Tell me about yourself."}]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda")
outputs = model.generate(**inputs, max_new_tokens=50)
print(f"Input Length: {inputs['input_ids'].shape[1]}")
print(f"Output: {repr(tokenizer.decode(outputs[0], skip_special_tokens=True))}")
# reset memory before new generation task
model.memory.reset()
# long context
with open("infbench.json", encoding="utf-8") as f:
example = json.load(f)
messages = [{"role": "user", "content": example["context"]}]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda")
outputs = model.generate(**inputs, do_sample=False, top_p=1, temperature=1, max_new_tokens=20)[:, inputs["input_ids"].shape[1]:]
print("*"*20)
print(f"Input Length: {inputs['input_ids'].shape[1]}")
print(f"Answers: {example['answer']}")
print(f"Prediction: {tokenizer.decode(outputs[0], skip_special_tokens=True)}")
NOTE: It's okay to see warnings like This is a friendly reminder - the current text generation call will exceed the model's predefined maximum length (32768). Depending on the model, you may observe exceptions, performance degradation, or nothing at all.
Just ignore it.
- Downloads last month
- 591
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.