nat-mini-in1k-224-finetuned-breakhis

This model is a fine-tuned version of shi-labs/nat-mini-in1k-224 on the image_folder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0983
  • Accuracy: 0.9669
  • F1: 0.9612
  • Roc Auc: 0.9648

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Roc Auc
0.3247 0.99 59 0.2084 0.9157 0.8968 0.8836
0.1338 2.0 119 0.1686 0.9355 0.9266 0.9437
0.1078 2.99 178 0.0986 0.9694 0.9636 0.9597
0.0795 4.0 238 0.0957 0.9719 0.9668 0.9660
0.0522 4.96 295 0.0983 0.9669 0.9612 0.9648

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2
Downloads last month
19
Safetensors
Model size
19.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nalindew/nat-mini-in1k-224-finetuned-breakhis

Finetuned
(6)
this model

Evaluation results