Model

fine-tuned LLaMA 3 8B on synthetic dataset generated by GPT-4 and LLaMA 3 70B via MLX-LM

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "mzbac/llama-3-8B-grammar-hf"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    
)

messages = [
    {
        "role": "system",
        "content": "Please correct, polish, or translate the text delimited by triple backticks to standard English.",
    },
]
messages.append({"role": "user", "content":"Text=```neither ็ป็†ๆˆ–ๅ‘˜ๅทฅ has been informed about the meeting```"})

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(
    input_ids,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.1,
)
response = outputs[0]
print(tokenizer.decode(response))

# <|begin_of_text|><|start_header_id|>system<|end_header_id|>

# Please correct, polish, or translate the text delimited by triple backticks to standard English.<|eot_id|><|start_header_id|>user<|end_header_id|>

# Text=```neither ็ป็†ๆˆ–ๅ‘˜ๅทฅ has been informed about the meeting```<|eot_id|><|start_header_id|>assistant<|end_header_id|>

# Output=Neither the manager nor the employees have been informed about the meeting.<|eot_id|>
Downloads last month
94
Safetensors
Model size
8.03B params
Tensor type
BF16
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.