Edit model card

Wav2Vec2-Large-XLSR-53-Arabic

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Arabic using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import librosa
import torch
from lang_trans.arabic import buckwalter

from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

asr_model = "muzamil47/wav2vec2-large-xlsr-53-arabic-demo"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def load_file_to_data(file, srate=16_000):
    batch = {}
    speech, sampling_rate = librosa.load(file, sr=srate)
    batch["speech"] = speech
    batch["sampling_rate"] = sampling_rate
    return batch


processor = Wav2Vec2Processor.from_pretrained(asr_model)
model = Wav2Vec2ForCTC.from_pretrained(asr_model).to(device)


def predict(data):
    features = processor(data["speech"], sampling_rate=data["sampling_rate"], return_tensors="pt", padding=True)
    input_values = features.input_values.to(device)
    try:
        attention_mask = features.attention_mask.to(device)
    except:
        attention_mask = None
    with torch.no_grad():
        predicted = torch.argmax(model(input_values, attention_mask=attention_mask).logits, dim=-1)

    data["predicted"] = processor.tokenizer.decode(predicted[0])
    print("predicted:", buckwalter.untrans(data["predicted"]))
    return data

predict(load_file_to_data("common_voice_ar_19058307.mp3"))

Output Result:

predicted: هل يمكنني التحدث مع المسؤول هنا

Evaluation

The model can be evaluated as follows on the Arabic test data of Common Voice.

import torch
import torchaudio
from datasets import load_dataset
from lang_trans.arabic import buckwalter
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

asr_model = "muzamil47/wav2vec2-large-xlsr-53-arabic-demo"

dataset = load_dataset("common_voice", "ar", split="test[:10]")

resamplers = {  # all three sampling rates exist in test split
    48000: torchaudio.transforms.Resample(48000, 16000),
    44100: torchaudio.transforms.Resample(44100, 16000),
    32000: torchaudio.transforms.Resample(32000, 16000),
}

def prepare_example(example):
    speech, sampling_rate = torchaudio.load(example["path"])
    example["speech"] = resamplers[sampling_rate](speech).squeeze().numpy()
    return example

dataset = dataset.map(prepare_example)
processor = Wav2Vec2Processor.from_pretrained(asr_model)
model = Wav2Vec2ForCTC.from_pretrained(asr_model).eval()

def predict(batch):
    inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding=True)
    with torch.no_grad():
        predicted = torch.argmax(model(inputs.input_values).logits, dim=-1)
    predicted[predicted == -100] = processor.tokenizer.pad_token_id  # see fine-tuning script
    batch["predicted"] = processor.tokenizer.batch_decode(predicted)
    return batch

dataset = dataset.map(predict, batched=True, batch_size=1, remove_columns=["speech"])

for reference, predicted in zip(dataset["sentence"], dataset["predicted"]):
    print("reference:", reference)
    print("predicted:", buckwalter.untrans(predicted))
    print("--")

Output Results:

reference: ما أطول عودك!
predicted: ما اطول عودك

reference: ماتت عمتي منذ سنتين.
predicted: ما تتعمتي منذو سنتين

reference: الألمانية ليست لغة سهلة.
predicted: الالمانية ليست لغة سهلة

reference: طلبت منه أن يبعث الكتاب إلينا.
predicted: طلبت منه ان يبعث الكتاب الينا

reference: .السيد إيتو رجل متعلم
predicted: السيد ايتو رجل متعلم

reference: الحمد لله.
predicted: الحمذ لللا

reference: في الوقت نفسه بدأت الرماح والسهام تقع بين الغزاة
predicted: في الوقت نفسه ابدات الرماح و السهام تقع بين الغزاء

reference: لا أريد أن أكون ثقيلَ الظِّل ، أريد أن أكون رائعًا! !
predicted: لا اريد ان اكون ثقيل الظل اريد ان اكون رائع

reference: خذ مظلة معك في حال أمطرت.
predicted: خذ مظلة معك في حال امطرت

reference: .ركب توم السيارة
predicted: ركب توم السيارة

The model evaluation (WER) on the Arabic test data of Common Voice.

import re

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import set_seed, Wav2Vec2ForCTC, Wav2Vec2Processor

set_seed(42)

test_dataset = load_dataset("common_voice", "ar", split="test")

processor = Wav2Vec2Processor.from_pretrained("muzamil47/wav2vec2-large-xlsr-53-arabic-demo")
model = Wav2Vec2ForCTC.from_pretrained("muzamil47/wav2vec2-large-xlsr-53-arabic-demo")
model.to("cuda")

chars_to_ignore_regex = '[\,\؟\.\!\-\;\\:\'\"\☭\«\»\؛\—\ـ\_\،\“\%\‘\”\�]'

resampler = torchaudio.transforms.Resample(48_000, 16_000)


# Preprocessing the datasets. We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
    batch["sentence"] = re.sub('[a-z]','',batch["sentence"])
    batch["sentence"] = re.sub("[إأٱآا]", "ا", batch["sentence"])
    noise = re.compile(""" ّ    | # Tashdid
                             َ    | # Fatha
                             ً    | # Tanwin Fath
                             ُ    | # Damma
                             ٌ    | # Tanwin Damm
                             ِ    | # Kasra
                             ٍ    | # Tanwin Kasr
                             ْ    | # Sukun
                             ـ     # Tatwil/Kashida
                         """, re.VERBOSE)
    batch["sentence"] = re.sub(noise, '', batch["sentence"])
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)


def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
         logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

wer = load_metric("wer")
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 53.54

Downloads last month
99
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train muzamil47/wav2vec2-large-xlsr-53-arabic-demo

Evaluation results