roberta-base-ner-demo

This model is a fine-tuned version of bayartsogt/mongolian-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1566
  • Precision: 0.6857
  • Recall: 0.7725
  • F1: 0.7265
  • Accuracy: 0.9453

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.9745 1.0 477 0.5080 0.2164 0.1205 0.1548 0.8187
0.425 2.0 954 0.3128 0.5213 0.5929 0.5548 0.9038
0.2943 3.0 1431 0.2337 0.5905 0.6781 0.6313 0.9237
0.2393 4.0 1908 0.2000 0.6303 0.7224 0.6732 0.9333
0.2134 5.0 2385 0.1813 0.6526 0.7434 0.6951 0.9384
0.1978 6.0 2862 0.1704 0.6629 0.7527 0.7050 0.9412
0.1885 7.0 3339 0.1647 0.6737 0.7625 0.7154 0.9429
0.1823 8.0 3816 0.1595 0.6816 0.7680 0.7222 0.9443
0.1792 9.0 4293 0.1576 0.6843 0.7713 0.7252 0.9451
0.1778 10.0 4770 0.1566 0.6857 0.7725 0.7265 0.9453

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Safetensors
Model size
125M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for munkhdelger1/roberta-base-ner-demo

Finetuned
(21)
this model