SDXL LoRA DreamBooth - multimodalart/politurbo3
Model description
These are multimodalart/politurbo3 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using DreamBooth.
LoRA for the text encoder was enabled: False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept TOK
→ use <s0><s1>
in your prompt
Use it with the 🧨 diffusers library
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('multimodalart/politurbo3', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='multimodalart/politurbo3', filename="embeddings.safetensors", repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
image = pipeline('A photo of <s0><s1>').images[0]
For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
Download model
Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- Download the LoRA *.safetensors here. Rename it and place it on your Lora folder.
- Download the text embeddings *.safetensors here. Rename it and place it on it on your embeddings folder.
All Files & versions.
- Downloads last month
- 10
Model tree for multimodalart/politurbo3
Base model
stabilityai/stable-diffusion-xl-base-1.0