prm800k_mistral_full_1203_re

This model is a fine-tuned version of peiyi9979/math-shepherd-mistral-7b-prm on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6381
  • Accuracy: 0.7273
  • Precision: 0.5455
  • Recall: 0.2202
  • F1: 0.3137

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 908932403
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.3
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0 0 0.7264 0.5221 0.3206 0.6147 0.4214
0.4487 0.0277 100 0.5639 0.7481 0.5882 0.3670 0.4520
0.4543 0.0553 200 0.5885 0.7532 0.5729 0.5046 0.5366
0.5093 0.0830 300 0.6134 0.7247 0.5224 0.3211 0.3977
0.4375 0.1107 400 0.5853 0.7299 0.5385 0.3211 0.4023
0.5172 0.1383 500 0.5865 0.7273 0.5270 0.3578 0.4262
0.4233 0.1660 600 0.6196 0.7091 0.4867 0.5046 0.4955
0.4578 0.1937 700 0.7282 0.6753 0.3667 0.2018 0.2604
0.5126 0.2213 800 0.6442 0.7299 0.6 0.1376 0.2239
0.497 0.2490 900 0.5881 0.7039 0.4742 0.4220 0.4466
0.5491 0.2767 1000 0.5973 0.7169 0.5 0.4128 0.4523
0.443 0.3044 1100 0.6581 0.7221 0.5333 0.1468 0.2302
0.5123 0.3320 1200 0.6223 0.6831 0.4330 0.3853 0.4078
0.5508 0.3597 1300 0.6529 0.7169 0.5 0.2018 0.2876
0.4592 0.3874 1400 0.6542 0.7325 0.5517 0.2936 0.3832
0.4795 0.4150 1500 0.6218 0.7013 0.4318 0.1743 0.2484
0.4955 0.4427 1600 0.7782 0.7247 0.6364 0.0642 0.1167
0.5032 0.4704 1700 0.5619 0.7169 0.5 0.6697 0.5725
0.5327 0.4980 1800 0.6404 0.7299 0.5556 0.2294 0.3247
0.508 0.5257 1900 0.6181 0.7299 0.5352 0.3486 0.4222
0.4908 0.5534 2000 0.6056 0.7481 0.6071 0.3119 0.4121
0.4834 0.5810 2100 0.6065 0.7429 0.5758 0.3486 0.4343
0.506 0.6087 2200 0.6348 0.7481 0.6 0.3303 0.4260
0.4991 0.6364 2300 0.6207 0.7506 0.6327 0.2844 0.3924
0.3951 0.6640 2400 0.6659 0.7221 0.5385 0.1284 0.2074
0.4769 0.6917 2500 0.6327 0.7143 0.4925 0.3028 0.375
0.4661 0.7194 2600 0.6489 0.7247 0.5306 0.2385 0.3291
0.4985 0.7470 2700 0.6353 0.7273 0.5435 0.2294 0.3226
0.4713 0.7747 2800 0.6370 0.7299 0.5455 0.2752 0.3659
0.3479 0.8024 2900 0.6417 0.7273 0.5333 0.2936 0.3787
0.377 0.8300 3000 0.6435 0.7273 0.54 0.2477 0.3396
0.4907 0.8577 3100 0.6059 0.7221 0.5156 0.3028 0.3815
0.3445 0.8854 3200 0.6503 0.7351 0.5714 0.2569 0.3544
0.4569 0.9131 3300 0.6253 0.7221 0.5185 0.2569 0.3436
0.3566 0.9407 3400 0.6265 0.7247 0.5283 0.2569 0.3457
0.3483 0.9684 3500 0.6361 0.7247 0.5333 0.2202 0.3117
0.4514 0.9961 3600 0.6381 0.7273 0.5455 0.2202 0.3137

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.4.0+cu118
  • Datasets 3.0.0
  • Tokenizers 0.20.1
Downloads last month
23
Safetensors
Model size
7.24B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mtzig/prm800k_mistral_full_1203_re

Finetuned
(2)
this model