See axolotl config
axolotl version: 0.4.1
base_model: microsoft/Phi-3-mini-4k-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: dataset.json
ds_type: json
type: completion
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./phi3-out
sequence_len: 4096
sample_packing: false
#pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_torch
# adam_beta2: 0.95
# adam_epsilon: 0.00001
# max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 0.0002 # 0.000003 #0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
# gradient_checkpointing: true
# gradient_checkpointing_kwargs:
# use_reentrant: True
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
#warmup_steps: 100
#evals_per_epoch: 4
# saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
#resize_token_embeddings_to_32x: true
special_tokens:
pad_token: "<|endoftext|>"
eos_token: "<|end|>"
phi3-out
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.8809
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4023 | 1.0 | 7628 | 1.4132 |
0.1342 | 2.0 | 15256 | 1.8809 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 22
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for msaavedra1234/phi3_parise
Base model
microsoft/Phi-3-mini-4k-instruct