About:

The model was fine-tuned on the LLaMA 7B. weights_Llama_7b

the model is able to identify trading candles. the model knows about:

  • Four Price Doji,
  • Inverted Hammer,
  • Hammer,
  • Hanging Man,
  • Doji,
  • Long-legged doji,
  • Dragonfly doji,
  • Inverted Doji,
  • Bullish,
  • Bearish

Prompts:

Instruction: identify candle
Input: open:241.5,close:232.9, high:241.7, low:230.8
or Input: 241.5,232.9,241.7,230.8

Output: Bearish
Instruction: identify candle
Input: open:241.5,close:232.9, high:241.7, low:230.8
or Input: 241.5,232.9, 241.7,230.8

Output: Doji
Instruction: identify candle:open:241.5,close:232.9, high:241.7, low:230.8
or Instruction: identify candle:241.5,232.9,241.7, 230.8

Output: Bearish:241.5,close:232.9, high:241.7, low:230.8
Instruction: find candle
Input: 38811.24,38838.41,38846.71,38736.24,234.00,45275276.00,59816.00,441285.00,645.00,84176.00,1694619.00,15732335.00

Output: Dragonfly doji:38811.24,38838.41,38846.71,38736.24

Instruction: find candle: {%candleName%}

Instruction: find candle: Bullish
Input: 38751.32,38818.6,38818.6,38695.03,62759348.00,2605789.00,71030.00,820738.00,59659.00,724738.00,7368363.00,50654.00

Output: Bullish:38751.32,38818.6,38818.6,38695.03

RUN

import sys
import torch
from peft import PeftModel
import transformers
import gradio as gr

assert (
    "LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig


SHARE_GRADIO=True
LOAD_8BIT = False

BASE_MODEL = "mrzlab630/weights_Llama_7b"
LORA_WEIGHTS = "mrzlab630/lora-alpaca-trading-candles"

tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)

if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

try:
    if torch.backends.mps.is_available():
        device = "mps"
except:
    pass

if device == "cuda":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        load_in_8bit=LOAD_8BIT,
        torch_dtype=torch.float16,
        device_map="auto",
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        torch_dtype=torch.float16,
    )
elif device == "mps":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
else:
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
    )


def generate_prompt(instruction, input=None):
    if input:
        return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:"""
    else:
        return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:"""

if not LOAD_8BIT:
    model.half()  # seems to fix bugs for some users.

model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
    model = torch.compile(model)


def evaluate(
    instruction,
    input=None,
    temperature=0.1,
    top_p=0.75,
    top_k=40,
    num_beams=4,
    max_new_tokens=128,
    **kwargs,
):
    prompt = generate_prompt(instruction, input)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to(device)
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        **kwargs,
    )
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
        )
    s = generation_output.sequences[0]
    output = tokenizer.decode(s)
    return output.split("### Response:")[1].strip()


gr.Interface(
    fn=evaluate,
    inputs=[
        gr.components.Textbox(
            lines=2, label="Instruction", placeholder="Tell me about alpacas."
        ),
        gr.components.Textbox(lines=2, label="Input", placeholder="none"),
        gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
        gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
        gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
        gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
        gr.components.Slider(
            minimum=1, maximum=2000, step=1, value=128, label="Max tokens"
        ),
    ],
    outputs=[
        gr.inputs.Textbox(
            lines=5,
            label="Output",
        )
    ],
    title="πŸ’Ή πŸ•― Alpaca-LoRA-Trading-Candles",
    description="Alpaca-LoRA-Trading-Candles is a 7B-parameter LLaMA model tuned to execute instructions. It is trained on the [trading candles] dataset(https://huggingface.co/datasets/mrzlab630/trading-candles) and uses the Huggingface LLaMA implementation. For more information, visit [project website](https://huggingface.co/mrzlab630/lora-alpaca-trading-candles).\nPrompts:\nInstruction: identify candle, Input: open:241.5,close:232.9, high:241.7, low:230.8\nInstruction: find candle, Input: 38811.24,38838.41,38846.71,38736.24,234.00,45275276.00,59816.00,441285.00,645.00,84176.00,1694619.00,15732335.00\nInstruction: find candle: Bullish, Input: 38751.32,38818.6,38818.6,38695.03,62759348.00,2605789.00,71030.00,820738.00,59659.00,724738.00,7368363.00,50654.00",
).launch(server_name="0.0.0.0", share=SHARE_GRADIO)

Downloads last month
64
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train mrzlab630/lora-alpaca-trading-candles

Spaces using mrzlab630/lora-alpaca-trading-candles 7