SentenceTransformer based on intfloat/multilingual-e5-large
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large on the clibrain/stsb_multi_es_aug_gpt3.5-turbo_2 dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("mrm8488/multilingual-e5-large-ft-sts-spanish-matryoshka-768-64-5e")
sentences = [
'tres perros gruñendo entre sí',
'Dos perros se aproximan uno al otro en el pasto.',
'Una mujer sonriente brinda cariño a un pequeño bebé.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.828 |
spearman_cosine |
0.8343 |
pearson_manhattan |
0.8228 |
spearman_manhattan |
0.8349 |
pearson_euclidean |
0.8231 |
spearman_euclidean |
0.8349 |
pearson_dot |
0.8196 |
spearman_dot |
0.8249 |
pearson_max |
0.828 |
spearman_max |
0.8349 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8236 |
spearman_cosine |
0.8333 |
pearson_manhattan |
0.8218 |
spearman_manhattan |
0.8332 |
pearson_euclidean |
0.8218 |
spearman_euclidean |
0.8334 |
pearson_dot |
0.8102 |
spearman_dot |
0.8179 |
pearson_max |
0.8236 |
spearman_max |
0.8334 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8162 |
spearman_cosine |
0.8304 |
pearson_manhattan |
0.8179 |
spearman_manhattan |
0.8301 |
pearson_euclidean |
0.8184 |
spearman_euclidean |
0.8302 |
pearson_dot |
0.7879 |
spearman_dot |
0.7905 |
pearson_max |
0.8184 |
spearman_max |
0.8304 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7942 |
spearman_cosine |
0.8198 |
pearson_manhattan |
0.8089 |
spearman_manhattan |
0.8223 |
pearson_euclidean |
0.8092 |
spearman_euclidean |
0.822 |
pearson_dot |
0.7342 |
spearman_dot |
0.7352 |
pearson_max |
0.8092 |
spearman_max |
0.8223 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7727 |
spearman_cosine |
0.8077 |
pearson_manhattan |
0.7976 |
spearman_manhattan |
0.8148 |
pearson_euclidean |
0.7979 |
spearman_euclidean |
0.8124 |
pearson_dot |
0.6726 |
spearman_dot |
0.6673 |
pearson_max |
0.7979 |
spearman_max |
0.8148 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.863 |
spearman_cosine |
0.8813 |
pearson_manhattan |
0.8771 |
spearman_manhattan |
0.8811 |
pearson_euclidean |
0.877 |
spearman_euclidean |
0.8812 |
pearson_dot |
0.8582 |
spearman_dot |
0.8707 |
pearson_max |
0.8771 |
spearman_max |
0.8813 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.859 |
spearman_cosine |
0.88 |
pearson_manhattan |
0.8744 |
spearman_manhattan |
0.8791 |
pearson_euclidean |
0.8748 |
spearman_euclidean |
0.8796 |
pearson_dot |
0.8464 |
spearman_dot |
0.855 |
pearson_max |
0.8748 |
spearman_max |
0.88 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8528 |
spearman_cosine |
0.8763 |
pearson_manhattan |
0.8715 |
spearman_manhattan |
0.8781 |
pearson_euclidean |
0.8725 |
spearman_euclidean |
0.8789 |
pearson_dot |
0.802 |
spearman_dot |
0.8007 |
pearson_max |
0.8725 |
spearman_max |
0.8789 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8392 |
spearman_cosine |
0.8692 |
pearson_manhattan |
0.8632 |
spearman_manhattan |
0.8716 |
pearson_euclidean |
0.8644 |
spearman_euclidean |
0.8724 |
pearson_dot |
0.7462 |
spearman_dot |
0.7403 |
pearson_max |
0.8644 |
spearman_max |
0.8724 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8214 |
spearman_cosine |
0.8621 |
pearson_manhattan |
0.8531 |
spearman_manhattan |
0.8632 |
pearson_euclidean |
0.8541 |
spearman_euclidean |
0.8633 |
pearson_dot |
0.6854 |
spearman_dot |
0.6726 |
pearson_max |
0.8541 |
spearman_max |
0.8633 |
Training Details
Training Dataset
stsb_multi_es_aug
- Dataset: stsb_multi_es_aug
- Size: 2,697 training samples
- Columns:
sentence1
, sentence2
, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
type |
string |
string |
float |
details |
- min: 8 tokens
- mean: 22.25 tokens
- max: 68 tokens
|
- min: 8 tokens
- mean: 22.01 tokens
- max: 79 tokens
|
- min: 0.0
- mean: 2.67
- max: 5.0
|
- Samples:
sentence1 |
sentence2 |
score |
El pájaro de tamaño reducido se posó con delicadeza en una rama cubierta de escarcha. |
Un ave de color amarillo descansaba tranquilamente en una rama. |
3.200000047683716 |
Una chica está tocando la flauta en un parque. |
Un grupo de músicos está tocando en un escenario al aire libre. |
1.286 |
La aclamada escritora británica, Doris Lessing, galardonada con el premio Nobel, fallece |
La destacada autora británica, Doris Lessing, reconocida con el prestigioso Premio Nobel, muere |
4.199999809265137 |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "CoSENTLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
stsb_multi_es_aug
- Dataset: stsb_multi_es_aug
- Size: 697 evaluation samples
- Columns:
sentence1
, sentence2
, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
type |
string |
string |
float |
details |
- min: 8 tokens
- mean: 22.76 tokens
- max: 67 tokens
|
- min: 7 tokens
- mean: 22.26 tokens
- max: 63 tokens
|
- min: 0.0
- mean: 2.3
- max: 5.0
|
- Samples:
sentence1 |
sentence2 |
score |
Un incendio ocurrido en un hospital psiquiátrico ruso resultó en la trágica muerte de 38 personas. |
Se teme que el incendio en un hospital psiquiátrico ruso cause la pérdida de la vida de 38 individuos. |
4.199999809265137 |
"Street dijo que el otro individuo a veces se siente avergonzado de su fiesta, lo cual provoca risas en la multitud" |
"A veces, el otro tipo se encuentra avergonzado de su fiesta y no se le puede culpar." |
3.5 |
El veterano diplomático de Malasia tuvo un encuentro con Suu Kyi el miércoles en la casa del lago en Yangon donde permanece bajo arresto domiciliario. |
Razali Ismail tuvo una reunión de 90 minutos con Suu Kyi, quien ganó el Premio Nobel de la Paz en 1991, en su casa del lago donde está recluida. |
3.691999912261963 |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "CoSENTLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
num_train_epochs
: 5
warmup_ratio
: 0.1
fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: batch_sampler
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
loss |
sts-dev-128_spearman_cosine |
sts-dev-256_spearman_cosine |
sts-dev-512_spearman_cosine |
sts-dev-64_spearman_cosine |
sts-dev-768_spearman_cosine |
sts-test-128_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-512_spearman_cosine |
sts-test-64_spearman_cosine |
sts-test-768_spearman_cosine |
0.5917 |
100 |
21.7032 |
21.7030 |
0.8030 |
0.8124 |
0.8205 |
0.7839 |
0.8215 |
- |
- |
- |
- |
- |
1.1834 |
200 |
21.4019 |
24.0898 |
0.7839 |
0.7972 |
0.8038 |
0.7680 |
0.8062 |
- |
- |
- |
- |
- |
1.7751 |
300 |
21.2168 |
22.5421 |
0.7909 |
0.8027 |
0.8058 |
0.7786 |
0.8068 |
- |
- |
- |
- |
- |
2.3669 |
400 |
20.7049 |
23.6522 |
0.7938 |
0.8049 |
0.8108 |
0.7873 |
0.8123 |
- |
- |
- |
- |
- |
2.9586 |
500 |
20.5077 |
23.6100 |
0.8017 |
0.8116 |
0.8155 |
0.7893 |
0.8185 |
- |
- |
- |
- |
- |
3.5503 |
600 |
19.2725 |
24.7539 |
0.8133 |
0.8254 |
0.8291 |
0.8032 |
0.8314 |
- |
- |
- |
- |
- |
4.1420 |
700 |
19.0841 |
26.5286 |
0.8210 |
0.8298 |
0.8333 |
0.8102 |
0.8333 |
- |
- |
- |
- |
- |
4.7337 |
800 |
18.6847 |
26.8158 |
0.8198 |
0.8304 |
0.8333 |
0.8077 |
0.8343 |
- |
- |
- |
- |
- |
5.0 |
845 |
- |
- |
- |
- |
- |
- |
- |
0.8692 |
0.8763 |
0.8800 |
0.8621 |
0.8813 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}