Mamba-Coder

MAMBA (2.8B) 🐍 fine-tuned on CodeAlpaca_20k for code generation

mamba-coder logo

Base model info

Mamba is a new state space model architecture showing promising performance on information-dense data such as language modeling, where previous subquadratic models fall short of Transformers. It is based on the line of progress on structured state space models, with an efficient hardware-aware design and implementation in the spirit of FlashAttention.

Dataset info

CodeAlpaca_20K: contains 20K instruction-following data used for fine-tuning the Code Alpaca model.

Usage

pip install torch==2.1.0 transformers==4.35.0 causal-conv1d==1.0.0 mamba-ssm==1.0.1
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel

CHAT_TEMPLATE_ID = "HuggingFaceH4/zephyr-7b-beta"

device = "cuda:0" if torch.cuda.is_available() else "cpu"
model_name = "mrm8488/mamba-coder"

eos_token = "<|endoftext|>"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.eos_token = eos_token
tokenizer.pad_token = tokenizer.eos_token
tokenizer.chat_template = AutoTokenizer.from_pretrained(CHAT_TEMPLATE_ID).chat_template

model = MambaLMHeadModel.from_pretrained(
        model_name, device=device, dtype=torch.float16)

messages = []
prompt = "Write a bash script to remove .tmp files"
messages.append(dict(role="user", content=prompt))

input_ids = tokenizer.apply_chat_template(
            messages, return_tensors="pt", add_generation_prompt=True
).to(device)

out = model.generate(
    input_ids=input_ids,
    max_length=2000,
    temperature=0.9,
    top_p=0.7,
    eos_token_id=tokenizer.eos_token_id,
)

decoded = tokenizer.batch_decode(out)
assistant_message = (
    decoded[0].split("<|assistant|>\n")[-1].replace(eos_token, "")
)

print(assistant_message)

Gradio Demo

git clone https://github.com/mrm8488/mamba-chat.git
cd mamba-chat

pip install -r requirements.txt
pip install -q gradio==4.8.0

python app.py \
--model mrm8488/mamba-coder \
--share

Evaluations

Coming soon!

Citation

@misc {manuel_romero_2024,
    author       = { {Manuel Romero} },
    title        = { mamba-coder (Revision 214a13a) },
    year         = 2024,
    url          = { https://huggingface.co/mrm8488/mamba-coder },
    doi          = { 10.57967/hf/1673 },
    publisher    = { Hugging Face }
}

Acknowledgments

Thanks to mamba-chat for heavily inspiring our work

Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train mrm8488/mamba-coder

Collection including mrm8488/mamba-coder