Electricidad small + Spanish SQuAD v1 ⚡❓

Electricidad-small-discriminator fine-tuned on Spanish SQUAD v1.1 dataset for Q&A downstream task.

Details of the downstream task (Q&A) - Dataset 📚

SQuAD-es-v1.1

Dataset split # Samples
Train 130 K
Test 11 K

Model training 🏋️‍

The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command:

python /content/transformers/examples/question-answering/run_squad.py \
  --model_type electra \
  --model_name_or_path 'mrm8488/electricidad-small-discriminator' \
  --do_eval \
  --do_train \
  --do_lower_case \
  --train_file '/content/dataset/train-v1.1-es.json' \
  --predict_file '/content/dataset/dev-v1.1-es.json' \
  --per_gpu_train_batch_size 16 \
  --learning_rate 3e-5 \
  --num_train_epochs 10 \
  --max_seq_length 384 \
  --doc_stride 128 \
  --output_dir '/content/electricidad-small-finetuned-squadv1-es' \
  --overwrite_output_dir \
  --save_steps 1000

Test set Results 🧾

Metric # Value
EM 46.82
F1 64.79
{
'exact': 46.82119205298013,
'f1': 64.79435260021918,
'total': 10570,
'HasAns_exact': 46.82119205298013,
HasAns_f1': 64.79435260021918,
'HasAns_total': 10570,
'best_exact': 46.82119205298013,
'best_exact_thresh': 0.0,
'best_f1': 64.79435260021918,
'best_f1_thresh': 0.0
}

Model in action 🚀

Fast usage with pipelines:

from transformers import pipeline

qa_pipeline = pipeline(
    "question-answering",
    model="mrm8488/electricidad-small-finetuned-squadv1-es",
    tokenizer="mrm8488/electricidad-small-finetuned-squadv1-es"
)

context = "Manuel ha creado una versión del modelo Electra small en español que alcanza una puntuación F1 de 65 en el dataset SQUAD-es y sólo pesa 50 MB"

q1 = "Cuál es su marcador F1?"
q2 = "¿Cuál es el tamaño del modelo?"
q3 = "¿Quién lo ha creado?"
q4 = "¿Que es lo que ha hecho Manuel?"


questions = [q1, q2, q3, q4]

for question in questions:
  result = qa_pipeline({
    'context': context,
    'question': question})
  print(result)

# Output:
{'score': 0.14836778166355025, 'start': 98, 'end': 100, 'answer': '65'}
{'score': 0.32219420810758237, 'start': 136, 'end': 140, 'answer': '50 MB'}
{'score': 0.9672326951118713, 'start': 0, 'end': 6, 'answer': 'Manuel'}
{'score': 0.23552458113848118, 'start': 10, 'end': 53, 'answer': 'creado una versión del modelo Electra small'}

Created by Manuel Romero/@mrm8488 | LinkedIn

Made with in Spain

Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.