Back to all models
token-classification mask_token: [MASK]
Query this model
πŸ”₯ This model is currently loaded and running on the Inference API. ⚠️ This model could not be loaded by the inference API. ⚠️ This model can be loaded on the Inference API on-demand.
JSON Output
API endpoint
								curl -X POST \
-H "Authorization: Bearer YOUR_ORG_OR_USER_API_TOKEN" \
-H "Content-Type: application/json" \
-d '"json encoded string"' \
Share Copied link to clipboard

Monthly model downloads

mrm8488/distilbert-base-multi-cased-finetuned-typo-detection mrm8488/distilbert-base-multi-cased-finetuned-typo-detection
last 30 days



Contributed by

mrm8488 Manuel Romero
119 models

How to use this model directly from the πŸ€—/transformers library:

Copy to clipboard
from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("mrm8488/distilbert-base-multi-cased-finetuned-typo-detection") model = AutoModelForTokenClassification.from_pretrained("mrm8488/distilbert-base-multi-cased-finetuned-typo-detection")

DISTILBERT 🌎 + Typo Detection βœβŒβœβœ”

distilbert-base-multilingual-cased fine-tuned on GitHub Typo Corpus for typo detection (using NER style)

Details of the downstream task (Typo detection as NER)

Metrics on test set πŸ“‹

Metric # score
F1 93.51
Precision 96.08
Recall 91.06

Model in action πŸ”¨

Fast usage with pipelines πŸ§ͺ

from transformers import pipeline

typo_checker = pipeline(

result = typo_checker("Adddd validation midelware")

# Output:
[{'entity': 'ok', 'score': 0.7128152847290039, 'word': 'add'},
 {'entity': 'typo', 'score': 0.5388424396514893, 'word': '##dd'},
 {'entity': 'ok', 'score': 0.94792640209198, 'word': 'validation'},
 {'entity': 'typo', 'score': 0.5839331746101379, 'word': 'mid'},
 {'entity': 'ok', 'score': 0.5195121765136719, 'word': '##el'},
 {'entity': 'ok', 'score': 0.7222476601600647, 'word': '##ware'}]

It worksπŸŽ‰! We typed wrong Add and middleware

Created by Manuel Romero/@mrm8488

Made with in Spain