Model Trained Using AutoTrain

This model was trained using AutoTrain. For more information, please visit AutoTrain.

Usage


from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "mrcuddle/Tiny-DarkLlama-Chat"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    device_map="auto",
    torch_dtype='auto'
).eval()

# Prompt content: "hi"
messages = [
    {"role": "user", "content": "hi"}
]

input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)

# Model response: "Hello! How can I assist you today?"
print(response)

Datasets used in training:

  • ChaoticNeutrals/Synthetic-Dark-RP
  • ChaoticNeutrals/Synthetic-RP
  • ChaoticNeutrals/Luminous_Opus
  • NobodyExistsOnTheInternet/ToxicQAFinal

Eval

Task Version Metric Value Stderr
arc_easy 0 acc 0.5892 ± 0.0101
acc_norm 0.4672 ± 0.0102
Downloads last month
4
Safetensors
Model size
1.1B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mrcuddle/Tiny-DarkLlama-Chat

Finetuned
(168)
this model
Quantizations
2 models

Datasets used to train mrcuddle/Tiny-DarkLlama-Chat