About

weighted/imatrix quants of https://huggingface.co/cognitivecomputations/yayi2-30b-llama

static quants are available at https://huggingface.co/mradermacher/yayi2-30b-llama-GGUF

Usage

If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files.

Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Link Type Size/GB Notes
GGUF i1-IQ1_S 6.8 for the desperate
GGUF i1-IQ1_M 7.3 mostly desperate
GGUF i1-IQ2_XXS 8.3
GGUF i1-IQ2_XS 9.2
GGUF i1-IQ2_S 9.8
GGUF i1-IQ2_M 10.6
GGUF i1-Q2_K_S 10.6 very low quality
GGUF i1-Q2_K 11.5 IQ3_XXS probably better
GGUF i1-IQ3_XXS 11.9 lower quality
GGUF i1-IQ3_XS 12.7
GGUF i1-Q3_K_S 13.4 IQ3_XS probably better
GGUF i1-IQ3_S 13.4 beats Q3_K*
GGUF i1-IQ3_M 14.0
GGUF i1-Q3_K_M 14.9 IQ3_S probably better
GGUF i1-Q3_K_L 16.2 IQ3_M probably better
GGUF i1-IQ4_XS 16.4
GGUF i1-Q4_0 17.4 fast, low quality
GGUF i1-Q4_K_S 17.5 optimal size/speed/quality
GGUF i1-Q4_K_M 18.3 fast, recommended
GGUF i1-Q5_K_S 21.1
GGUF i1-Q5_K_M 21.6
GGUF i1-Q6_K 25.0 practically like static Q6_K

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png

And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized.

Thanks

I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to @nicoboss for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.

Downloads last month
543
GGUF
Model size
30.4B params
Architecture
llama

1-bit

2-bit

3-bit

4-bit

5-bit

6-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for mradermacher/yayi2-30b-llama-i1-GGUF

Quantized
(4)
this model