Visualize in Weights & Biases

segformer-b1-finetuned-segments-pv

This model is a fine-tuned version of nvidia/segformer-b1-finetuned-ade-512-512 on the mouadenna/satellite_PV_dataset_train_test dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0192
  • Mean Iou: 0.8631
  • Precision: 0.9304

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Precision
0.0051 1.0 3666 0.0084 0.8064 0.8864
0.0038 2.0 7332 0.0115 0.7607 0.9338
0.0001 3.0 10998 0.0089 0.8145 0.9115
0.0 4.0 14664 0.0078 0.8317 0.9063
0.0 5.0 18330 0.0093 0.8078 0.9244
0.0017 6.0 21996 0.0080 0.8370 0.9203
0.0019 7.0 25662 0.0085 0.8395 0.9163
0.0001 8.0 29328 0.0099 0.8379 0.8931
0.0019 9.0 32994 0.0100 0.8388 0.9225
0.0048 10.0 36660 0.0103 0.8422 0.9035
0.0238 11.0 40326 0.0132 0.8378 0.9169
0.0 12.0 43992 0.0093 0.8509 0.9254
0.0017 13.0 47658 0.0116 0.8417 0.9243
0.0014 14.0 51324 0.0127 0.8348 0.9017
0.0031 15.0 54990 0.0123 0.8463 0.9299
0.0016 16.0 58656 0.0109 0.8439 0.9062
0.0091 17.0 62322 0.0199 0.8143 0.9344
0.0017 18.0 65988 0.0155 0.8326 0.9184
0.0 19.0 69654 0.0128 0.8351 0.8971
0.0013 20.0 73320 0.0135 0.8360 0.8970
0.0015 21.0 76986 0.0151 0.8466 0.9055
0.0011 22.0 80652 0.0136 0.8525 0.9117
0.0016 23.0 84318 0.0129 0.8478 0.9052
0.0007 24.0 87984 0.0189 0.8422 0.9422
0.0012 25.0 91650 0.0134 0.8435 0.9070
0.0012 26.0 95316 0.0152 0.8532 0.9243
0.0028 27.0 98982 0.0145 0.8521 0.9273
0.0023 28.0 102648 0.0156 0.8566 0.9288
0.0 29.0 106314 0.0176 0.8494 0.9222
0.0 30.0 109980 0.0156 0.8542 0.9282
0.0 31.0 113646 0.0158 0.8578 0.9273
0.0012 32.0 117312 0.0171 0.8560 0.9258
0.0005 33.0 120978 0.0146 0.8534 0.9149
0.0016 34.0 124644 0.0199 0.8519 0.9250
0.0015 35.0 128310 0.0164 0.8559 0.9181
0.0005 36.0 131976 0.0164 0.8551 0.9176
0.0014 37.0 135642 0.0172 0.8594 0.9263
0.0008 38.0 139308 0.0178 0.8601 0.9273
0.0 39.0 142974 0.0153 0.8601 0.9281
0.0 40.0 146640 0.0165 0.8632 0.9324
0.0 41.0 150306 0.0172 0.8624 0.9328
0.0002 42.0 153972 0.0201 0.8590 0.9303
0.0033 43.0 157638 0.0180 0.8611 0.9347
0.0 44.0 161304 0.0155 0.8620 0.9283
0.0011 45.0 164970 0.0174 0.8624 0.9277
0.0004 46.0 168636 0.0192 0.8612 0.9316
0.0 47.0 172302 0.0185 0.8612 0.9232
0.0007 48.0 175968 0.0173 0.8623 0.9247
0.0007 49.0 179634 0.0196 0.8628 0.9295
0.0003 50.0 183300 0.0192 0.8631 0.9304

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
13.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mouadenna/segformer-b1-finetuned-segments-pv

Finetuned
(18)
this model
Finetunes
1 model