Text Generation
Transformers
PyTorch
mpt
Composer
MosaicML
llm-foundry
custom_code
text-generation-inference
File size: 4,534 Bytes
ab2b3bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import json
import os
from typing import Any, Dict, List, Optional, Union
_MODEL_KEYS_TO_LOG = ['pretrained_model_name_or_path', 'pretrained', 'vocab_size', 'd_model', 'n_heads', 'n_layers', 'expansion_ratio', 'max_seq_len']

def maybe_create_mosaicml_logger() -> Optional[MosaicMLLogger]:
    """Creates a MosaicMLLogger if the run was sent from the Mosaic platform."""
    if os.environ.get(MOSAICML_PLATFORM_ENV_VAR, 'false').lower() == 'true' and os.environ.get(MOSAICML_ACCESS_TOKEN_ENV_VAR):
        return MosaicMLLogger()

def find_mosaicml_logger(loggers: List[LoggerDestination]) -> Optional[MosaicMLLogger]:
    """Returns the first MosaicMLLogger from a list, and None otherwise."""
    return next((logger for logger in loggers if isinstance(logger, MosaicMLLogger)), None)

def log_eval_analytics(mosaicml_logger: MosaicMLLogger, model_configs: ListConfig, icl_tasks: Union[str, ListConfig], eval_gauntlet_config: Optional[Union[str, DictConfig]]):
    """Logs analytics for runs using the `eval.py` script."""
    metrics: Dict[str, Any] = {'llmfoundry/script': 'eval'}
    metrics['llmfoundry/gauntlet_configured'] = eval_gauntlet_config is not None
    metrics['llmfoundry/icl_configured'] = isinstance(icl_tasks, str) or len(icl_tasks) > 0
    metrics['llmfoundry/model_configs'] = []
    for model_config in model_configs:
        nested_model_config = model_config.get('model', {})
        model_config_data = {}
        for key in _MODEL_KEYS_TO_LOG:
            if nested_model_config.get(key, None) is not None:
                model_config_data[key] = nested_model_config.get(key)
        if len(model_config_data) > 0:
            metrics['llmfoundry/model_configs'].append(json.dumps(model_config_data, sort_keys=True))
    mosaicml_logger.log_metrics(metrics)
    mosaicml_logger._flush_metadata(force_flush=True)

def log_train_analytics(mosaicml_logger: MosaicMLLogger, model_config: DictConfig, train_loader_config: DictConfig, eval_loader_config: Optional[Union[DictConfig, ListConfig]], callback_configs: Optional[DictConfig], tokenizer_name: str, load_path: Optional[str], icl_tasks_config: Optional[Union[ListConfig, str]], eval_gauntlet: Optional[Union[DictConfig, str]]):
    """Logs analytics for runs using the `train.py` script."""
    train_loader_dataset = train_loader_config.get('dataset', {})
    metrics: Dict[str, Any] = {'llmfoundry/tokenizer_name': tokenizer_name, 'llmfoundry/script': 'train', 'llmfoundry/train_loader_name': train_loader_config.get('name')}
    if callback_configs is not None:
        metrics['llmfoundry/callbacks'] = [name for name, _ in callback_configs.items()]
    metrics['llmfoundry/gauntlet_configured'] = eval_gauntlet is not None
    metrics['llmfoundry/icl_configured'] = icl_tasks_config is not None and (isinstance(icl_tasks_config, str) or len(icl_tasks_config) > 0)
    if train_loader_dataset.get('hf_name', None) is not None:
        metrics['llmfoundry/train_dataset_hf_name'] = train_loader_dataset.get('hf_name', None)
    if train_loader_config.get('name') == 'finetuning':
        metrics['llmfoundry/train_task_type'] = 'INSTRUCTION_FINETUNE'
    elif train_loader_config.get('name') == 'text':
        if load_path is not None or model_config.get('pretrained') == True:
            metrics['llmfoundry/train_task_type'] = 'CONTINUED_PRETRAIN'
        else:
            metrics['llmfoundry/train_task_type'] = 'PRETRAIN'
    if eval_loader_config is not None:
        metrics['llmfoundry/eval_loaders'] = []
        if isinstance(eval_loader_config, ListConfig):
            eval_loader_configs: ListConfig = eval_loader_config
        else:
            eval_loader_configs = ListConfig([eval_loader_config])
        for loader_config in eval_loader_configs:
            eval_loader_info = {}
            eval_loader_dataset = loader_config.get('dataset', {})
            eval_loader_info['name'] = loader_config.get('name')
            if eval_loader_dataset.get('hf_name', None) is not None:
                eval_loader_info['dataset_hf_name'] = eval_loader_dataset.get('hf_name')
            metrics['llmfoundry/eval_loaders'].append(json.dumps(eval_loader_info, sort_keys=True))
    model_config_data = {}
    for key in _MODEL_KEYS_TO_LOG:
        if model_config.get(key, None) is not None:
            model_config_data[f'llmfoundry/{key}'] = model_config.get(key)
    if len(model_config_data) > 0:
        metrics.update(model_config_data)
    mosaicml_logger.log_metrics(metrics)
    mosaicml_logger._flush_metadata(force_flush=True)