monai
medical
File size: 7,302 Bytes
650e244
 
 
 
 
 
 
3c8069c
650e244
 
 
 
 
 
 
 
 
 
 
 
 
 
6ecf3f0
650e244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ecf3f0
 
650e244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c16b7b
3c8069c
 
 
 
 
 
 
 
650e244
5c16b7b
 
 
 
 
 
 
 
 
fd8c5bc
3c8069c
 
 
650e244
 
 
 
3c8069c
 
650e244
 
 
6ecf3f0
650e244
3c8069c
 
650e244
 
 
 
 
 
3c8069c
650e244
 
f0039cf
 
650e244
3c8069c
650e244
 
f0039cf
650e244
8b5b5dc
 
 
 
 
 
650e244
 
8008a76
650e244
 
fd8c5bc
 
 
 
 
 
8b5b5dc
650e244
 
8008a76
650e244
 
3c8069c
650e244
8b5b5dc
650e244
 
8008a76
650e244
 
8b5b5dc
650e244
 
8008a76
650e244
 
8b5b5dc
650e244
 
8008a76
650e244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
---
tags:
- monai
- medical
library_name: monai
license: apache-2.0
---
# Model Overview
A pre-trained model for segmenting nuclei cells with user clicks/interactions.

![nuclick](https://github.com/mostafajahanifar/nuclick_torch/raw/master/docs/11.gif)
![nuclick](https://github.com/mostafajahanifar/nuclick_torch/raw/master/docs/33.gif)
![nuclick](https://github.com/mostafajahanifar/nuclick_torch/raw/master/docs/22.gif)

This model is trained using [BasicUNet](https://docs.monai.io/en/latest/networks.html#basicunet) over [ConSeP](https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet) dataset.

## Data
The training dataset is from https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet
```commandline
wget https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/consep_dataset.zip
unzip -q consep_dataset.zip
```
![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_nuclick_annotation_dataset.jpeg)<br/>

### Preprocessing
After [downloading this dataset](https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/consep_dataset.zip),
python script `data_process.py` from `scripts` folder can be used to preprocess and generate the final dataset for training.

```
python scripts/data_process.py --input /path/to/data/CoNSeP --output /path/to/data/CoNSePNuclei
```

After generating the output files, please modify the `dataset_dir` parameter specified in `configs/train.json` and `configs/inference.json` to reflect the output folder which contains new dataset.json.

Class values in dataset are

 - 1 = other
 - 2 = inflammatory
 - 3 = healthy epithelial
 - 4 = dysplastic/malignant epithelial
 - 5 = fibroblast
 - 6 = muscle
 - 7 = endothelial

As part of pre-processing, the following steps are executed.

 - Crop and Extract each nuclei Image + Label (128x128) based on the centroid given in the dataset.
 - Combine classes 3 & 4 into the epithelial class and 5,6 & 7 into the spindle-shaped class.
 - Update the label index for the target nuclei based on the class value
 - Other cells which are part of the patch are modified to have label idx = 255

Example dataset.json
```json
{
  "training": [
    {
      "image": "/workspace/data/CoNSePNuclei/Train/Images/train_1_3_0001.png",
      "label": "/workspace/data/CoNSePNuclei/Train/Labels/train_1_3_0001.png",
      "nuclei_id": 1,
      "mask_value": 3,
      "centroid": [
        64,
        64
      ]
    }
  ],
  "validation": [
    {
      "image": "/workspace/data/CoNSePNuclei/Test/Images/test_1_3_0001.png",
      "label": "/workspace/data/CoNSePNuclei/Test/Labels/test_1_3_0001.png",
      "nuclei_id": 1,
      "mask_value": 3,
      "centroid": [
        64,
        64
      ]
    }
  ]
}
```

## Training Configuration
The training was performed with the following:

- GPU: at least 12GB of GPU memory
- Actual Model Input: 5 x 128 x 128
- AMP: True
- Optimizer: Adam
- Learning Rate: 1e-4
- Loss: DiceLoss

### Memory Consumption

- Dataset Manager: CacheDataset
- Data Size: 13,136 PNG images
- Cache Rate: 1.0
- Single GPU - System RAM Usage: 4.7G

### Memory Consumption Warning

If you face memory issues with CacheDataset, you can either switch to a regular Dataset class or lower the caching rate `cache_rate` in the configurations within range [0, 1] to minimize the System RAM requirements.

## Input
5 channels
- 3 RGB channels
- +ve signal channel (this nuclei)
- -ve signal channel (other nuclei)

## Output
2 channels
 - 0 = Background
 - 1 = Nuclei

![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_nuclick_annotation_train_in_out.jpeg)


## Performance
This model achieves the following Dice score on the validation data provided as part of the dataset:

- Train Dice score = 0.89
- Validation Dice score = 0.85


#### Training Loss and Dice
A graph showing the training Loss and Dice over 50 epochs.

![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_nuclick_annotation_train_loss_v2.png) <br>
![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_nuclick_annotation_train_dice_v2.png) <br>

#### Validation Dice
A graph showing the validation mean Dice over 50 epochs.

![](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_nuclick_annotation_val_dice_v2.png) <br>

## MONAI Bundle Commands
In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.

For more details usage instructions, visit the [MONAI Bundle Configuration Page](https://docs.monai.io/en/latest/config_syntax.html).

#### Execute training:

```
python -m monai.bundle run --config_file configs/train.json
```

Please note that if the default dataset path is not modified with the actual path in the bundle config files, you can also override it by using `--dataset_dir`:

```
python -m monai.bundle run --config_file configs/train.json --dataset_dir <actual dataset path>
```

#### Override the `train` config to execute multi-GPU training:

```
torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run --config_file "['configs/train.json','configs/multi_gpu_train.json']"
```

Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).

#### Override the `train` config to execute evaluation with the trained model:

```
python -m monai.bundle run --config_file "['configs/train.json','configs/evaluate.json']"
```

#### Override the `train` config and `evaluate` config to execute multi-GPU evaluation:

```
torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run --config_file "['configs/train.json','configs/evaluate.json','configs/multi_gpu_evaluate.json']"
```

#### Execute inference:

```
python -m monai.bundle run --config_file configs/inference.json
```

# References
[1] Koohbanani, Navid Alemi, et al. "NuClick: a deep learning framework for interactive segmentation of microscopic images." Medical Image Analysis 65 (2020): 101771. https://arxiv.org/abs/2005.14511.

[2] S. Graham, Q. D. Vu, S. E. A. Raza, A. Azam, Y-W. Tsang, J. T. Kwak and N. Rajpoot. "HoVer-Net: Simultaneous Segmentation and Classification of Nuclei in Multi-Tissue Histology Images." Medical Image Analysis, Sept. 2019. [[doi](https://doi.org/10.1016/j.media.2019.101563)]

[3] NuClick [PyTorch](https://github.com/mostafajahanifar/nuclick_torch) Implementation

# License
Copyright (c) MONAI Consortium

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.