A2C Agent playing PandaReachDense-v2
This is a trained model of a A2C agent playing PandaReachDense-v2 using the stable-baselines3 library.
The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo tqc --env PandaReachDense-v2 -orga sb3 -f logs/
python enjoy.py --algo a2c --env PandaReachDense-v2 -f logs/
Training (with the RL Zoo)
python train.py --algo a2c --env PandaReachDense-v2 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo a2c --env PandaReachDense-v2 -f logs/ -orga sb3
Panda Gym environments: arxiv.org/abs/2106.13687
- Downloads last month
- 0
Evaluation results
- mean_reward on PandaReachDense-v2self-reported-1.39 +/- 0.30