This is an experimental HQQ 2-bit quantized Llama2-7B-chat model using a low-rank adapter to improve the performance (referred to as HQQ+).
Quantizing small models at extreme low-bits is a challenging task. The purpose of this model is to show the community what to expect when fine-tuning such models. We notice that, when given more specialized data, the low-bit model can even outperform the full-precision model at some tasks.
This version offloads the meta-data to the CPU, so only the 2-bit weights and the low-rank adapters are stored in the GPU memory.
Datasets
The adapter was trained via SFT on random subsets of the following:
Base Model
- wikitext-2-raw-v1 (full)
Chat Model
- timdettmers/openassistant-guanaco (full)
- microsoft/orca-math-word-problems-200k (10K)
- meta-math/MetaMathQA (10K)
- HuggingFaceH4/ultrafeedback_binarized (10K - chosen answers only)
Performance
Models | Llama2-7B (fp16) | Llama2-7B (HQQ 2-bit) | Llama2-7B (HQQ+ 2-bit) | Quip# (2-bit) |
---|---|---|---|---|
Wiki Perpexlity | 5.18 | 6.06 | 5.14 | 8.54 |
VRAM (GB) | 13.5 | 2.6 | 2.69 | 2.72 |
forward time (sec) | 0.1 | 0.221 | 0.27 | 0.353 |
Models | Llama2-7B-chat (fp16) | Llama2-7B-chat (HQQ 2-bit) | Llama2-7B-chat (HQQ+ 2-bit) |
---|---|---|---|
ARC (25-shot) | 53.67 | 45.56 | 47.01 |
HellaSwag (10-shot) | 78.56 | 73.59 | 73.74 |
MMLU (5-shot) | 48.16 | 43.18 | 43.33 |
TruthfulQA-MC2 | 45.32 | 43.1 | 42.66 |
Winogrande (5-shot) | 72.53 | 67.32 | 71.51 |
GSM8K (5-shot) | 23.12 | 9.7 | 28.43 |
Average | 53.56 | 47.08 | 51.11 |
Usage
First, install the latest version of HQQ:
pip install git+https://github.com/mobiusml/hqq.git
Then you can use the sample code below:
from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer
#Load the model
model_id = 'mobiuslabsgmbh/Llama-2-7b-chat-hf_2bitgs8_hqq'
model = HQQModelForCausalLM.from_quantized(model_id, adapter='adapter_v0.1.lora')
tokenizer = AutoTokenizer.from_pretrained(model_id)
#Setup Inference Mode
tokenizer.add_bos_token = False
tokenizer.add_eos_token = False
if not tokenizer.pad_token: tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model.config.use_cache = True
model.eval();
# Optional: torch compile for faster inference
# model = torch.compile(model)
#Streaming Inference
import torch, transformers
from threading import Thread
def chat_processor(chat, max_new_tokens=100, do_sample=True, device='cuda'):
tokenizer.use_default_system_prompt = False
streamer = transformers.TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_params = dict(
tokenizer("<s> [INST] " + chat + " [/INST] ", return_tensors="pt").to(device),
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
pad_token_id=tokenizer.pad_token_id,
top_p=0.90 if do_sample else None,
top_k=50 if do_sample else None,
temperature= 0.6 if do_sample else None,
num_beams=1,
repetition_penalty=1.2,
)
t = Thread(target=model.generate, kwargs=generate_params)
t.start()
print("User: ", chat);
print("Assistant: ");
outputs = ""
for text in streamer:
outputs += text
print(text, end="", flush=True)
torch.cuda.empty_cache()
return outputs
Example
outputs = chat_processor("If you had 5 apples yesterday and you ate 2 today morning, how many apples do you have this evening?", max_new_tokens=1000, do_sample=False)
User: If you had 5 apples yesterday and you ate 2 today morning, how many apples do you have this evening?
Assistant:
You started with 5 apples.You ate 2 of them so now you have 5-2=3 apples left.So by the evening you will still have 3 apples.
- Downloads last month
- 9