cls_headline_llama3_v1
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.2376
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.02 | 5 | 0.5809 |
0.7814 | 0.04 | 10 | 0.4209 |
0.7814 | 0.06 | 15 | 0.3950 |
0.3932 | 0.08 | 20 | 0.3830 |
0.3932 | 0.1 | 25 | 0.3727 |
0.3726 | 0.12 | 30 | 0.3658 |
0.3726 | 0.14 | 35 | 0.3597 |
0.3572 | 0.16 | 40 | 0.3560 |
0.3572 | 0.18 | 45 | 0.3524 |
0.3437 | 0.2 | 50 | 0.3493 |
0.3437 | 0.22 | 55 | 0.3452 |
0.3404 | 0.24 | 60 | 0.3449 |
0.3404 | 0.26 | 65 | 0.3427 |
0.3349 | 0.28 | 70 | 0.3398 |
0.3349 | 0.3 | 75 | 0.3368 |
0.3342 | 0.32 | 80 | 0.3350 |
0.3342 | 0.34 | 85 | 0.3322 |
0.3316 | 0.36 | 90 | 0.3310 |
0.3316 | 0.38 | 95 | 0.3290 |
0.3251 | 0.4 | 100 | 0.3271 |
0.3251 | 0.42 | 105 | 0.3251 |
0.3137 | 0.44 | 110 | 0.3251 |
0.3137 | 0.46 | 115 | 0.3245 |
0.3216 | 0.48 | 120 | 0.3216 |
0.3216 | 0.5 | 125 | 0.3204 |
0.3171 | 0.52 | 130 | 0.3198 |
0.3171 | 0.54 | 135 | 0.3167 |
0.3161 | 0.56 | 140 | 0.3153 |
0.3161 | 0.58 | 145 | 0.3152 |
0.3176 | 0.6 | 150 | 0.3135 |
0.3176 | 0.62 | 155 | 0.3123 |
0.3089 | 0.64 | 160 | 0.3109 |
0.3089 | 0.66 | 165 | 0.3102 |
0.3109 | 0.68 | 170 | 0.3094 |
0.3109 | 0.7 | 175 | 0.3070 |
0.3058 | 0.72 | 180 | 0.3053 |
0.3058 | 0.74 | 185 | 0.3030 |
0.3041 | 0.76 | 190 | 0.3026 |
0.3041 | 0.78 | 195 | 0.3012 |
0.2975 | 0.8 | 200 | 0.2988 |
0.2975 | 0.82 | 205 | 0.2972 |
0.2861 | 0.84 | 210 | 0.2976 |
0.2861 | 0.86 | 215 | 0.2956 |
0.2964 | 0.88 | 220 | 0.2944 |
0.2964 | 0.9 | 225 | 0.2918 |
0.2907 | 0.92 | 230 | 0.2899 |
0.2907 | 0.94 | 235 | 0.2893 |
0.2861 | 0.96 | 240 | 0.2873 |
0.2861 | 0.98 | 245 | 0.2870 |
0.2794 | 1.0 | 250 | 0.2859 |
0.2794 | 1.02 | 255 | 0.2902 |
0.251 | 1.04 | 260 | 0.2857 |
0.251 | 1.06 | 265 | 0.2876 |
0.2498 | 1.08 | 270 | 0.2837 |
0.2498 | 1.1 | 275 | 0.2852 |
0.2445 | 1.12 | 280 | 0.2807 |
0.2445 | 1.14 | 285 | 0.2809 |
0.251 | 1.16 | 290 | 0.2806 |
0.251 | 1.18 | 295 | 0.2818 |
0.2455 | 1.2 | 300 | 0.2795 |
0.2455 | 1.22 | 305 | 0.2772 |
0.2416 | 1.24 | 310 | 0.2775 |
0.2416 | 1.26 | 315 | 0.2754 |
0.2463 | 1.28 | 320 | 0.2740 |
0.2463 | 1.3 | 325 | 0.2740 |
0.2381 | 1.32 | 330 | 0.2732 |
0.2381 | 1.34 | 335 | 0.2727 |
0.2401 | 1.36 | 340 | 0.2714 |
0.2401 | 1.38 | 345 | 0.2698 |
0.2426 | 1.4 | 350 | 0.2691 |
0.2426 | 1.42 | 355 | 0.2671 |
0.2371 | 1.44 | 360 | 0.2657 |
0.2371 | 1.46 | 365 | 0.2650 |
0.2409 | 1.48 | 370 | 0.2646 |
0.2409 | 1.5 | 375 | 0.2620 |
0.2386 | 1.52 | 380 | 0.2599 |
0.2386 | 1.54 | 385 | 0.2592 |
0.2331 | 1.56 | 390 | 0.2584 |
0.2331 | 1.58 | 395 | 0.2571 |
0.2339 | 1.6 | 400 | 0.2554 |
0.2339 | 1.62 | 405 | 0.2563 |
0.2295 | 1.64 | 410 | 0.2550 |
0.2295 | 1.66 | 415 | 0.2527 |
0.2349 | 1.68 | 420 | 0.2537 |
0.2349 | 1.7 | 425 | 0.2515 |
0.2296 | 1.72 | 430 | 0.2514 |
0.2296 | 1.74 | 435 | 0.2486 |
0.2288 | 1.76 | 440 | 0.2479 |
0.2288 | 1.78 | 445 | 0.2478 |
0.2346 | 1.8 | 450 | 0.2456 |
0.2346 | 1.82 | 455 | 0.2440 |
0.227 | 1.84 | 460 | 0.2424 |
0.227 | 1.86 | 465 | 0.2427 |
0.2217 | 1.88 | 470 | 0.2410 |
0.2217 | 1.9 | 475 | 0.2402 |
0.2203 | 1.92 | 480 | 0.2398 |
0.2203 | 1.94 | 485 | 0.2406 |
0.2129 | 1.96 | 490 | 0.2388 |
0.2129 | 1.98 | 495 | 0.2358 |
0.2195 | 2.0 | 500 | 0.2376 |
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1
- Datasets 2.19.1
- Tokenizers 0.14.1
Model tree for mmousavi660/cls_headline_llama3_v1
Base model
meta-llama/Meta-Llama-3-8B-Instruct