vit-base-patch16-224-in21k-FINALLaneClassifier-VIT50epochsAUGMENTED
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0000
- Accuracy: {'accuracy': 1.0}
- F1: {'f1': 1.0}
- Precision: {'precision': 1.0}
- Recall: {'recall': 1.0}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.0297 | 0.9981 | 392 | 0.0204 | {'accuracy': 0.9998408150270615} | {'f1': 0.9998407816167802} | {'precision': 0.9998385012919897} | {'recall': 0.9998431126451208} |
0.0082 | 1.9987 | 785 | 0.0069 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.008 | 2.9994 | 1178 | 0.0038 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0023 | 4.0 | 1571 | 0.0020 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0035 | 4.9981 | 1963 | 0.0031 | {'accuracy': 0.9993632601082458} | {'f1': 0.9993631351350802} | {'precision': 0.9993546305259762} | {'recall': 0.9993724505804833} |
0.0011 | 5.9987 | 2356 | 0.0007 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0013 | 6.9994 | 2749 | 0.0005 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0006 | 8.0 | 3142 | 0.0003 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.001 | 8.9981 | 3534 | 0.0002 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0002 | 9.9987 | 3927 | 0.0002 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0004 | 10.9994 | 4320 | 0.0002 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0001 | 12.0 | 4713 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0007 | 12.9981 | 5105 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0028 | 13.9987 | 5498 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0006 | 14.9994 | 5891 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0036 | 16.0 | 6284 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0016 | 16.9981 | 6676 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0026 | 17.9987 | 7069 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0007 | 18.9994 | 7462 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0011 | 20.0 | 7855 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0003 | 20.9981 | 8247 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0008 | 21.9987 | 8640 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0001 | 22.9994 | 9033 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0 | 24.0 | 9426 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0002 | 24.9981 | 9818 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0 | 25.9987 | 10211 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0002 | 26.9994 | 10604 | 0.0002 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0001 | 28.0 | 10997 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0 | 28.9981 | 11389 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0002 | 29.9987 | 11782 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0001 | 30.9994 | 12175 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0004 | 32.0 | 12568 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0 | 32.9981 | 12960 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.002 | 33.9987 | 13353 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0 | 34.9994 | 13746 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0 | 36.0 | 14139 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0001 | 36.9981 | 14531 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0 | 37.9987 | 14924 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0 | 38.9994 | 15317 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0035 | 40.0 | 15710 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0002 | 40.9981 | 16102 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0 | 41.9987 | 16495 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0 | 42.9994 | 16888 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0 | 44.0 | 17281 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0 | 44.9981 | 17673 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0 | 45.9987 | 18066 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0 | 46.9994 | 18459 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0 | 48.0 | 18852 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0 | 48.9981 | 19244 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
0.0 | 49.9045 | 19600 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
Framework versions
- Transformers 4.43.3
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 25
Model tree for mmomm25/vit-base-patch16-224-in21k-FINALLaneClassifier-VIT50epochsAUGMENTED
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefolderself-reported[object Object]
- F1 on imagefolderself-reported[object Object]
- Precision on imagefolderself-reported[object Object]
- Recall on imagefolderself-reported[object Object]