vit-base-patch16-224-in21k-FINALLaneClassifier-VIT50epochsAUGMENTED

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Accuracy: {'accuracy': 1.0}
  • F1: {'f1': 1.0}
  • Precision: {'precision': 1.0}
  • Recall: {'recall': 1.0}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.0297 0.9981 392 0.0204 {'accuracy': 0.9998408150270615} {'f1': 0.9998407816167802} {'precision': 0.9998385012919897} {'recall': 0.9998431126451208}
0.0082 1.9987 785 0.0069 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.008 2.9994 1178 0.0038 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0023 4.0 1571 0.0020 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0035 4.9981 1963 0.0031 {'accuracy': 0.9993632601082458} {'f1': 0.9993631351350802} {'precision': 0.9993546305259762} {'recall': 0.9993724505804833}
0.0011 5.9987 2356 0.0007 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0013 6.9994 2749 0.0005 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0006 8.0 3142 0.0003 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.001 8.9981 3534 0.0002 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0002 9.9987 3927 0.0002 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0004 10.9994 4320 0.0002 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0001 12.0 4713 0.0001 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0007 12.9981 5105 0.0001 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0028 13.9987 5498 0.0001 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0006 14.9994 5891 0.0001 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0036 16.0 6284 0.0001 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0016 16.9981 6676 0.0001 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0026 17.9987 7069 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0007 18.9994 7462 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0011 20.0 7855 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0003 20.9981 8247 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0008 21.9987 8640 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0001 22.9994 9033 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0 24.0 9426 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0002 24.9981 9818 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0 25.9987 10211 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0002 26.9994 10604 0.0002 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0001 28.0 10997 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0 28.9981 11389 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0002 29.9987 11782 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0001 30.9994 12175 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0004 32.0 12568 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0 32.9981 12960 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.002 33.9987 13353 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0 34.9994 13746 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0 36.0 14139 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0001 36.9981 14531 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0 37.9987 14924 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0 38.9994 15317 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0035 40.0 15710 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0002 40.9981 16102 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0 41.9987 16495 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0 42.9994 16888 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0 44.0 17281 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0 44.9981 17673 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0 45.9987 18066 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0 46.9994 18459 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0 48.0 18852 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0 48.9981 19244 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0 49.9045 19600 0.0000 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.3.1
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
25
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for mmomm25/vit-base-patch16-224-in21k-FINALLaneClassifier-VIT50epochsAUGMENTED

Finetuned
(1800)
this model

Evaluation results