vit-base-patch16-224-in21k-FINALAsphaltLaneClassifier-detectorVIT30epochsTrainValAUGMENTED

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0427
  • Accuracy: {'accuracy': 0.9804996953077392}
  • F1: {'f1': 0.9800980973913306}
  • Precision: {'precision': 0.9820258378580791}
  • Recall: {'recall': 0.9807653776798236}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2763 0.9994 1230 0.2269 {'accuracy': 0.9640463132236441} {'f1': 0.9630811116832685} {'precision': 0.9640657360845907} {'recall': 0.964963663987968}
0.2271 1.9996 2461 0.0938 {'accuracy': 0.9764371318301849} {'f1': 0.9761448410653392} {'precision': 0.977818779128281} {'recall': 0.9770355856317611}
0.1737 2.9998 3692 0.1073 {'accuracy': 0.9577493398334349} {'f1': 0.9569000292933705} {'precision': 0.959800239637741} {'recall': 0.9552400643800896}
0.0361 4.0 4923 0.0532 {'accuracy': 0.9782652853950843} {'f1': 0.9778377521587307} {'precision': 0.9794461626122134} {'recall': 0.9785602619414852}
0.1613 4.9994 6153 0.0574 {'accuracy': 0.9762340036563071} {'f1': 0.9759632908989441} {'precision': 0.9776775737495528} {'recall': 0.9768318271751163}
0.098 5.9996 7384 0.0551 {'accuracy': 0.9774527726995734} {'f1': 0.9771202466632837} {'precision': 0.9788281272701719} {'recall': 0.9779919889728328}
0.0867 6.9998 8615 0.0476 {'accuracy': 0.9794840544383506} {'f1': 0.9791014077010869} {'precision': 0.9810276957543254} {'recall': 0.9798251744941444}
0.0855 8.0 9846 0.0657 {'accuracy': 0.9731870810481413} {'f1': 0.9729473784067677} {'precision': 0.9755572390111291} {'recall': 0.973170601861673}
0.1041 8.9994 11076 0.0454 {'accuracy': 0.9802965671338615} {'f1': 0.9799080834672663} {'precision': 0.981846143338762} {'recall': 0.9805652976478109}
0.0674 9.9996 12307 0.0471 {'accuracy': 0.9794840544383506} {'f1': 0.9791012017629246} {'precision': 0.9809386449900642} {'recall': 0.9798657735056604}
0.1083 10.9998 13538 0.0437 {'accuracy': 0.9802965671338615} {'f1': 0.9799080834672663} {'precision': 0.981846143338762} {'recall': 0.9805652976478109}
0.1197 12.0 14769 0.0560 {'accuracy': 0.9766402600040626} {'f1': 0.9763088751876786} {'precision': 0.9779331362017656} {'recall': 0.9773126240278623}
0.0543 12.9994 15999 0.0455 {'accuracy': 0.9794840544383506} {'f1': 0.9791012017629246} {'precision': 0.9809386449900642} {'recall': 0.9798657735056604}
0.0949 13.9996 17230 0.0440 {'accuracy': 0.9802965671338615} {'f1': 0.9798985564872046} {'precision': 0.981846143338762} {'recall': 0.9805462716324967}
0.0764 14.9998 18461 0.0508 {'accuracy': 0.9782652853950843} {'f1': 0.9779293131150244} {'precision': 0.9797174734398995} {'recall': 0.9787862484966643}
0.0482 16.0 19692 0.0625 {'accuracy': 0.9760308754824294} {'f1': 0.9757209855091478} {'precision': 0.9773628450645225} {'recall': 0.9768071193135048}
0.0504 16.9994 20922 0.0428 {'accuracy': 0.9804996953077392} {'f1': 0.9800980973913306} {'precision': 0.9820258378580791} {'recall': 0.9807653776798236}
0.1044 17.9996 22153 0.0428 {'accuracy': 0.9804996953077392} {'f1': 0.9800980973913306} {'precision': 0.9820258378580791} {'recall': 0.9807653776798236}
0.07 18.9998 23384 0.0431 {'accuracy': 0.9804996953077392} {'f1': 0.9800980973913306} {'precision': 0.9820258378580791} {'recall': 0.9807653776798236}
0.0804 20.0 24615 0.0439 {'accuracy': 0.9802965671338615} {'f1': 0.9798986112130946} {'precision': 0.9818070673483438} {'recall': 0.980585456844991}
0.0334 20.9994 25845 0.0443 {'accuracy': 0.9800934389599838} {'f1': 0.9796902317752838} {'precision': 0.9816436079495018} {'recall': 0.9803850961958226}
0.0839 21.9996 27076 0.0433 {'accuracy': 0.9802965671338615} {'f1': 0.9798986112130946} {'precision': 0.9818070673483438} {'recall': 0.980585456844991}
0.0826 22.9998 28307 0.0443 {'accuracy': 0.9802965671338615} {'f1': 0.9798918326004827} {'precision': 0.98177108929345} {'recall': 0.9805511990548504}
0.0897 24.0 29538 0.0434 {'accuracy': 0.9804996953077392} {'f1': 0.9800980973913306} {'precision': 0.9820258378580791} {'recall': 0.9807653776798236}
0.0911 24.9994 30768 0.0437 {'accuracy': 0.9800934389599838} {'f1': 0.9796991791604638} {'precision': 0.9815889658615741} {'recall': 0.9804055360101583}
0.0266 25.9996 31999 0.0426 {'accuracy': 0.9804996953077392} {'f1': 0.9800980973913306} {'precision': 0.9820258378580791} {'recall': 0.9807653776798236}
0.0453 26.9998 33230 0.0453 {'accuracy': 0.9796871826122283} {'f1': 0.9793004750340752} {'precision': 0.9811547577187063} {'recall': 0.980045694340493}
0.0509 28.0 34461 0.0427 {'accuracy': 0.9804996953077392} {'f1': 0.9800980973913306} {'precision': 0.9820258378580791} {'recall': 0.9807653776798236}
0.0682 28.9994 35691 0.0429 {'accuracy': 0.9804996953077392} {'f1': 0.9800980973913306} {'precision': 0.9820258378580791} {'recall': 0.9807653776798236}
0.0601 29.9817 36900 0.0427 {'accuracy': 0.9804996953077392} {'f1': 0.9800980973913306} {'precision': 0.9820258378580791} {'recall': 0.9807653776798236}

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.3.1
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
34
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for mmomm25/vit-base-patch16-224-in21k-FINALAsphaltLaneClassifier-detectorVIT30epochsTrainValAUGMENTED

Finetuned
(1800)
this model

Evaluation results