Edit model card

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7565
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1839 1.0 113 2.0630 0.41
1.5052 2.0 226 1.4029 0.57
1.144 3.0 339 0.9807 0.77
0.9971 4.0 452 0.8701 0.75
0.6168 5.0 565 0.7094 0.76
0.4665 6.0 678 0.5940 0.83
0.58 7.0 791 0.4763 0.86
0.1009 8.0 904 0.4859 0.87
0.1817 9.0 1017 0.5313 0.88
0.0467 10.0 1130 0.6114 0.86
0.0201 11.0 1243 0.6677 0.85
0.1188 12.0 1356 0.6934 0.87
0.0055 13.0 1469 0.7070 0.89
0.0046 14.0 1582 0.7601 0.87
0.0043 15.0 1695 0.7584 0.87
0.0033 16.0 1808 0.7588 0.86
0.0696 17.0 1921 0.7495 0.88
0.0028 18.0 2034 0.7535 0.87
0.0027 19.0 2147 0.7571 0.87
0.0028 20.0 2260 0.7565 0.87

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
54
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mlubos/distilhubert-finetuned-gtzan

Finetuned
(384)
this model

Dataset used to train mlubos/distilhubert-finetuned-gtzan

Evaluation results