Edit model card

results

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6367
  • Rewards/chosen: -0.0965
  • Rewards/rejected: -0.4524
  • Rewards/accuracies: 1.0
  • Rewards/margins: 0.3560
  • Logps/rejected: -2.2621
  • Logps/chosen: -0.4823
  • Logits/rejected: -1.8871
  • Logits/chosen: -1.6815
  • Nll Loss: 0.5673
  • Log Odds Ratio: -0.0697
  • Log Odds Chosen: 2.8182

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
4.5921 0.2126 11 3.5043 -0.6803 -0.8039 1.0 0.1236 -4.0195 -3.4015 -3.2932 -3.2264 3.3934 -0.4430 0.6340
1.3234 0.4251 22 0.8683 -0.1360 -0.2818 1.0 0.1458 -1.4090 -0.6802 -2.6124 -2.3854 0.7738 -0.2790 1.1626
0.7333 0.6377 33 0.8013 -0.1269 -0.3679 1.0 0.2410 -1.8394 -0.6346 -2.3638 -2.1864 0.7403 -0.1581 1.8427
0.5916 0.8502 44 0.6367 -0.0965 -0.4524 1.0 0.3560 -2.2621 -0.4823 -1.8871 -1.6815 0.5673 -0.0697 2.8182

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for mlrun/Meta-Llama-3-8B-fashion-v7.0

Adapter
(509)
this model