πŸ¦™πŸ•ŠοΈ Alpagasus-2-7b

πŸ“ Paper | πŸ“„ Blog | πŸ’» Code | πŸ€— Model (unofficial)

This is a Llama-2-7b-hf model fine-tuned using QLoRA (4-bit precision) on the mlabonne/alpagasus dataset, which is a high-quality subset (9k samples) of the Alpaca dataset (52k samples).

πŸ”§ Training

It was trained on an RTX 3090 using the πŸœπŸ”§TinyTuner. Parameters:

# Dataset
dataset_name: mlabonne/alpagasus
prompt_template: alpaca
max_seq_length: 512
val_set_size: 0.01

# Loading
load_in_8bit: false
load_in_4bit: true
bf16: true
fp16: false
tf32: true

# Lora
adapter: qlora
lora_model_dir:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.1
lora_target_modules:
  - q_proj
  - v_proj
lora_fan_in_fan_out:

# Training
learning_rate: 0.00002
micro_batch_size: 24
gradient_accumulation_steps: 1
num_epochs: 3
lr_scheduler_type: cosine
optim: paged_adamw_32bit
group_by_length: true
warmup_ratio: 0.03
eval_steps: 0.01
save_strategy: epoch
logging_steps: 1
weight_decay: 0
max_grad_norm:
max_steps: -1
gradient_checkpointing: true

# QLoRA
bnb_4bit_compute_dtype: float16
bnb_4bit_quant_type: nf4
bnb_4bit_use_double_quant: false

πŸ’» Usage

# pip install transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/alpagasus-2-7b"
prompt = "What is a large language model?"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

sequences = pipeline(
    f'### Instruction: {prompt}',
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
    max_length=200,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train mlabonne/alpagasus-2-7b