File size: 6,988 Bytes
4eab9ea 38aba7d 4eab9ea 777b2c7 4eab9ea 38aba7d ef2d8a7 38aba7d 8f4b077 38aba7d 8f4b077 38aba7d 8f4b077 38aba7d 8f4b077 38aba7d 8f4b077 38aba7d 8f4b077 38aba7d 8f4b077 38aba7d 8f4b077 38aba7d 4eab9ea 38aba7d 5aa70ec 38aba7d cc0ad73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
license: apache-2.0
tags:
- merge
- mergekit
---
![](https://i.imgur.com/FSKtmRc.png)
# Marcoro14-7B-slerp
This model is a merge of the following models made with [mergekit](https://github.com/cg123/mergekit):
* [AIDC-ai-business/Marcoroni-7B-v3](https://huggingface.co/AIDC-ai-business/Marcoroni-7B-v3)
* [EmbeddedLLM/Mistral-7B-Merge-14-v0.1](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1)
## 🏆 Evaluation
Marcoro14-7B-slerp is the best-performing 7B LLM on the Open LLM Leaderboard (rank 1 below is 9B):
![](https://i.imgur.com/5XUuP7g.png)
I also evaluated it using Nous' benchmark suite and obtained the following results:
| Model |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average|
|-------------------------|------:|------:|---------:|-------:|------:|
|Marcoro14-7B-slerp | 44.66| 76.24| 64.15| 45.64| 57.67|
|OpenHermes-2.5-Mistral-7B| 43.07| 73.12| 53.04| 40.96| 52.57|
|Change | +1.59| +3.12| +11.11| +4.68| +5.1|
### AGIEval
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |26.38|± | 2.77|
| | |acc_norm|24.41|± | 2.70|
|agieval_logiqa_en | 0|acc |38.25|± | 1.91|
| | |acc_norm|39.32|± | 1.92|
|agieval_lsat_ar | 0|acc |24.35|± | 2.84|
| | |acc_norm|25.22|± | 2.87|
|agieval_lsat_lr | 0|acc |50.00|± | 2.22|
| | |acc_norm|50.59|± | 2.22|
|agieval_lsat_rc | 0|acc |62.83|± | 2.95|
| | |acc_norm|62.08|± | 2.96|
|agieval_sat_en | 0|acc |79.61|± | 2.81|
| | |acc_norm|79.61|± | 2.81|
|agieval_sat_en_without_passage| 0|acc |45.15|± | 3.48|
| | |acc_norm|45.63|± | 3.48|
|agieval_sat_math | 0|acc |33.18|± | 3.18|
| | |acc_norm|30.45|± | 3.11|
Average: 44.66%
### GPT4ALL
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |63.91|± | 1.40|
| | |acc_norm|64.93|± | 1.39|
|arc_easy | 0|acc |86.07|± | 0.71|
| | |acc_norm|83.75|± | 0.76|
|boolq | 1|acc |88.56|± | 0.56|
|hellaswag | 0|acc |67.31|± | 0.47|
| | |acc_norm|85.28|± | 0.35|
|openbookqa | 0|acc |36.40|± | 2.15|
| | |acc_norm|48.20|± | 2.24|
|piqa | 0|acc |82.59|± | 0.88|
| | |acc_norm|84.39|± | 0.85|
|winogrande | 0|acc |78.53|± | 1.15|
Average: 76.24%
### TruthfulQA
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |46.88|± | 1.75|
| | |mc2 |64.15|± | 1.52|
Average: 64.15%
### Bigbench
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|56.32|± | 3.61|
|bigbench_date_understanding | 0|multiple_choice_grade|66.40|± | 2.46|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|45.35|± | 3.11|
|bigbench_geometric_shapes | 0|multiple_choice_grade|20.33|± | 2.13|
| | |exact_str_match | 4.74|± | 1.12|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|30.00|± | 2.05|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|21.43|± | 1.55|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|52.33|± | 2.89|
|bigbench_movie_recommendation | 0|multiple_choice_grade|39.20|± | 2.19|
|bigbench_navigate | 0|multiple_choice_grade|53.90|± | 1.58|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|72.15|± | 1.00|
|bigbench_ruin_names | 0|multiple_choice_grade|52.46|± | 2.36|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|25.75|± | 1.38|
|bigbench_snarks | 0|multiple_choice_grade|72.38|± | 3.33|
|bigbench_sports_understanding | 0|multiple_choice_grade|73.63|± | 1.40|
|bigbench_temporal_sequences | 0|multiple_choice_grade|45.70|± | 1.58|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|23.44|± | 1.20|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|18.51|± | 0.93|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|52.33|± | 2.89|
Average: 45.64%
Average score: 57.67%
## 🧩 Configuration
```yaml
slices:
- sources:
- model: AIDC-ai-business/Marcoroni-7B-v3
layer_range: [0, 32]
- model: EmbeddedLLM/Mistral-7B-Merge-14-v0.1
layer_range: [0, 32]
merge_method: slerp
base_model: AIDC-ai-business/Marcoroni-7B-v3
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Marcoro14-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
Output:
> A large language model is a type of artificial intelligence (AI) system that has been trained on vast amounts of text data. It's designed to understand and generate human-like language, making predictions on what words or phrases might come next in a sentence or document. These models use complex algorithms and neural network architectures to learn from the data and improve their performance over time. Some well-known large language models include GPT-3 from OpenAI and BERT from Google.
|