File size: 6,988 Bytes
4eab9ea
 
 
 
 
 
 
38aba7d
 
4eab9ea
 
 
 
777b2c7
4eab9ea
38aba7d
 
ef2d8a7
38aba7d
 
 
 
 
8f4b077
38aba7d
 
 
 
 
8f4b077
38aba7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4b077
38aba7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4b077
38aba7d
 
8f4b077
38aba7d
 
 
 
8f4b077
38aba7d
 
8f4b077
38aba7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4b077
38aba7d
 
 
 
4eab9ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38aba7d
 
 
 
 
 
 
 
 
 
 
5aa70ec
38aba7d
 
 
 
 
 
 
 
 
 
 
 
 
 
cc0ad73
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
license: apache-2.0
tags:
- merge
- mergekit
---

![](https://i.imgur.com/FSKtmRc.png)

# Marcoro14-7B-slerp

This model is a merge of the following models made with [mergekit](https://github.com/cg123/mergekit):
 * [AIDC-ai-business/Marcoroni-7B-v3](https://huggingface.co/AIDC-ai-business/Marcoroni-7B-v3)
 * [EmbeddedLLM/Mistral-7B-Merge-14-v0.1](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1)

## 🏆 Evaluation

Marcoro14-7B-slerp is the best-performing 7B LLM on the Open LLM Leaderboard (rank 1 below is 9B):

![](https://i.imgur.com/5XUuP7g.png)

I also evaluated it using Nous' benchmark suite and obtained the following results:

|          Model          |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average|
|-------------------------|------:|------:|---------:|-------:|------:|
|Marcoro14-7B-slerp       |  44.66|  76.24|     64.15|   45.64|  57.67|
|OpenHermes-2.5-Mistral-7B|  43.07|  73.12|     53.04|   40.96|  52.57|
|Change                   |  +1.59|  +3.12|    +11.11|   +4.68|   +5.1|

### AGIEval
|             Task             |Version| Metric |Value|   |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat              |      0|acc     |26.38|±  |  2.77|
|                              |       |acc_norm|24.41|±  |  2.70|
|agieval_logiqa_en             |      0|acc     |38.25|±  |  1.91|
|                              |       |acc_norm|39.32|±  |  1.92|
|agieval_lsat_ar               |      0|acc     |24.35|±  |  2.84|
|                              |       |acc_norm|25.22|±  |  2.87|
|agieval_lsat_lr               |      0|acc     |50.00|±  |  2.22|
|                              |       |acc_norm|50.59|±  |  2.22|
|agieval_lsat_rc               |      0|acc     |62.83|±  |  2.95|
|                              |       |acc_norm|62.08|±  |  2.96|
|agieval_sat_en                |      0|acc     |79.61|±  |  2.81|
|                              |       |acc_norm|79.61|±  |  2.81|
|agieval_sat_en_without_passage|      0|acc     |45.15|±  |  3.48|
|                              |       |acc_norm|45.63|±  |  3.48|
|agieval_sat_math              |      0|acc     |33.18|±  |  3.18|
|                              |       |acc_norm|30.45|±  |  3.11|

Average: 44.66%

### GPT4ALL
|    Task     |Version| Metric |Value|   |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge|      0|acc     |63.91|±  |  1.40|
|             |       |acc_norm|64.93|±  |  1.39|
|arc_easy     |      0|acc     |86.07|±  |  0.71|
|             |       |acc_norm|83.75|±  |  0.76|
|boolq        |      1|acc     |88.56|±  |  0.56|
|hellaswag    |      0|acc     |67.31|±  |  0.47|
|             |       |acc_norm|85.28|±  |  0.35|
|openbookqa   |      0|acc     |36.40|±  |  2.15|
|             |       |acc_norm|48.20|±  |  2.24|
|piqa         |      0|acc     |82.59|±  |  0.88|
|             |       |acc_norm|84.39|±  |  0.85|
|winogrande   |      0|acc     |78.53|±  |  1.15|

Average: 76.24%

### TruthfulQA
|    Task     |Version|Metric|Value|   |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc|      1|mc1   |46.88|±  |  1.75|
|             |       |mc2   |64.15|±  |  1.52|

Average: 64.15%

### Bigbench
|                      Task                      |Version|       Metric        |Value|   |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement                       |      0|multiple_choice_grade|56.32|±  |  3.61|
|bigbench_date_understanding                     |      0|multiple_choice_grade|66.40|±  |  2.46|
|bigbench_disambiguation_qa                      |      0|multiple_choice_grade|45.35|±  |  3.11|
|bigbench_geometric_shapes                       |      0|multiple_choice_grade|20.33|±  |  2.13|
|                                                |       |exact_str_match      | 4.74|±  |  1.12|
|bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|30.00|±  |  2.05|
|bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|21.43|±  |  1.55|
|bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|52.33|±  |  2.89|
|bigbench_movie_recommendation                   |      0|multiple_choice_grade|39.20|±  |  2.19|
|bigbench_navigate                               |      0|multiple_choice_grade|53.90|±  |  1.58|
|bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|72.15|±  |  1.00|
|bigbench_ruin_names                             |      0|multiple_choice_grade|52.46|±  |  2.36|
|bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|25.75|±  |  1.38|
|bigbench_snarks                                 |      0|multiple_choice_grade|72.38|±  |  3.33|
|bigbench_sports_understanding                   |      0|multiple_choice_grade|73.63|±  |  1.40|
|bigbench_temporal_sequences                     |      0|multiple_choice_grade|45.70|±  |  1.58|
|bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|23.44|±  |  1.20|
|bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|18.51|±  |  0.93|
|bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|52.33|±  |  2.89|

Average: 45.64%

Average score: 57.67%

## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: AIDC-ai-business/Marcoroni-7B-v3
        layer_range: [0, 32]
      - model: EmbeddedLLM/Mistral-7B-Merge-14-v0.1
        layer_range: [0, 32]
merge_method: slerp
base_model: AIDC-ai-business/Marcoroni-7B-v3
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/Marcoro14-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

Output:

> A large language model is a type of artificial intelligence (AI) system that has been trained on vast amounts of text data. It's designed to understand and generate human-like language, making predictions on what words or phrases might come next in a sentence or document. These models use complex algorithms and neural network architectures to learn from the data and improve their performance over time. Some well-known large language models include GPT-3 from OpenAI and BERT from Google.