File size: 6,470 Bytes
4eab9ea
 
 
 
 
 
 
38aba7d
 
4eab9ea
 
 
 
777b2c7
4eab9ea
38aba7d
 
 
 
 
 
 
 
8f4b077
38aba7d
 
 
 
 
8f4b077
38aba7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4b077
38aba7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4b077
38aba7d
 
8f4b077
38aba7d
 
 
 
8f4b077
38aba7d
 
8f4b077
38aba7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4b077
38aba7d
 
 
 
4eab9ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38aba7d
 
 
 
 
 
 
 
 
 
 
5aa70ec
38aba7d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
license: apache-2.0
tags:
- merge
- mergekit
---

![](https://i.imgur.com/FSKtmRc.png)

# Marcoro14-7B-slerp

This model is a merge of the following models made with [mergekit](https://github.com/cg123/mergekit):
 * [AIDC-ai-business/Marcoroni-7B-v3](https://huggingface.co/AIDC-ai-business/Marcoroni-7B-v3)
 * [EmbeddedLLM/Mistral-7B-Merge-14-v0.1](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1)

## 🏆 Evaluation

Marcoro14-7B-slerp is the second best-performing 7B LLM on the Open LLM Leaderboard:

![](https://i.imgur.com/5XUuP7g.png)

I also evaluated it using Nous' benchmark suite and obtained the following results:

|          Model          |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average|
|-------------------------|------:|------:|---------:|-------:|------:|
|Marcoro14-7B-slerp       |  44.66|  76.24|     64.15|   45.64|  57.67|
|OpenHermes-2.5-Mistral-7B|  43.07|  73.12|     53.04|   40.96|  52.57|
|Change                   |  +1.59|  +3.12|    +11.11|   +4.68|   +5.1|

### AGIEval
|             Task             |Version| Metric |Value|   |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat              |      0|acc     |26.38|±  |  2.77|
|                              |       |acc_norm|24.41|±  |  2.70|
|agieval_logiqa_en             |      0|acc     |38.25|±  |  1.91|
|                              |       |acc_norm|39.32|±  |  1.92|
|agieval_lsat_ar               |      0|acc     |24.35|±  |  2.84|
|                              |       |acc_norm|25.22|±  |  2.87|
|agieval_lsat_lr               |      0|acc     |50.00|±  |  2.22|
|                              |       |acc_norm|50.59|±  |  2.22|
|agieval_lsat_rc               |      0|acc     |62.83|±  |  2.95|
|                              |       |acc_norm|62.08|±  |  2.96|
|agieval_sat_en                |      0|acc     |79.61|±  |  2.81|
|                              |       |acc_norm|79.61|±  |  2.81|
|agieval_sat_en_without_passage|      0|acc     |45.15|±  |  3.48|
|                              |       |acc_norm|45.63|±  |  3.48|
|agieval_sat_math              |      0|acc     |33.18|±  |  3.18|
|                              |       |acc_norm|30.45|±  |  3.11|

Average: 44.66%

### GPT4ALL
|    Task     |Version| Metric |Value|   |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge|      0|acc     |63.91|±  |  1.40|
|             |       |acc_norm|64.93|±  |  1.39|
|arc_easy     |      0|acc     |86.07|±  |  0.71|
|             |       |acc_norm|83.75|±  |  0.76|
|boolq        |      1|acc     |88.56|±  |  0.56|
|hellaswag    |      0|acc     |67.31|±  |  0.47|
|             |       |acc_norm|85.28|±  |  0.35|
|openbookqa   |      0|acc     |36.40|±  |  2.15|
|             |       |acc_norm|48.20|±  |  2.24|
|piqa         |      0|acc     |82.59|±  |  0.88|
|             |       |acc_norm|84.39|±  |  0.85|
|winogrande   |      0|acc     |78.53|±  |  1.15|

Average: 76.24%

### TruthfulQA
|    Task     |Version|Metric|Value|   |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc|      1|mc1   |46.88|±  |  1.75|
|             |       |mc2   |64.15|±  |  1.52|

Average: 64.15%

### Bigbench
|                      Task                      |Version|       Metric        |Value|   |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement                       |      0|multiple_choice_grade|56.32|±  |  3.61|
|bigbench_date_understanding                     |      0|multiple_choice_grade|66.40|±  |  2.46|
|bigbench_disambiguation_qa                      |      0|multiple_choice_grade|45.35|±  |  3.11|
|bigbench_geometric_shapes                       |      0|multiple_choice_grade|20.33|±  |  2.13|
|                                                |       |exact_str_match      | 4.74|±  |  1.12|
|bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|30.00|±  |  2.05|
|bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|21.43|±  |  1.55|
|bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|52.33|±  |  2.89|
|bigbench_movie_recommendation                   |      0|multiple_choice_grade|39.20|±  |  2.19|
|bigbench_navigate                               |      0|multiple_choice_grade|53.90|±  |  1.58|
|bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|72.15|±  |  1.00|
|bigbench_ruin_names                             |      0|multiple_choice_grade|52.46|±  |  2.36|
|bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|25.75|±  |  1.38|
|bigbench_snarks                                 |      0|multiple_choice_grade|72.38|±  |  3.33|
|bigbench_sports_understanding                   |      0|multiple_choice_grade|73.63|±  |  1.40|
|bigbench_temporal_sequences                     |      0|multiple_choice_grade|45.70|±  |  1.58|
|bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|23.44|±  |  1.20|
|bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|18.51|±  |  0.93|
|bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|52.33|±  |  2.89|

Average: 45.64%

Average score: 57.67%

## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: AIDC-ai-business/Marcoroni-7B-v3
        layer_range: [0, 32]
      - model: EmbeddedLLM/Mistral-7B-Merge-14-v0.1
        layer_range: [0, 32]
merge_method: slerp
base_model: AIDC-ai-business/Marcoroni-7B-v3
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/Marcoro14-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```