🔑 Keyphrase Extraction Model: distilbert-openkp
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, this process can take a lot of time ⏳.
Here is where Artificial Intelligence 🤖 comes in. Currently, classical machine learning methods, that use statistical and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies and context of words in a text.
📓 Model Description
This model uses KBIR as its base model and fine-tunes it on the OpenKP dataset.
Keyphrase extraction models are transformer models fine-tuned as a token classification problem where each word in the document is classified as being part of a keyphrase or not.
Label | Description |
---|---|
B-KEY | At the beginning of a keyphrase |
I-KEY | Inside a keyphrase |
O | Outside a keyphrase |
✋ Intended Uses & Limitations
🛑 Limitations
- Limited amount of predicted keyphrases.
- Only works for English documents.
❓ How To Use
from transformers import (
TokenClassificationPipeline,
AutoModelForTokenClassification,
AutoTokenizer,
)
from transformers.pipelines import AggregationStrategy
import numpy as np
# Define keyphrase extraction pipeline
class KeyphraseExtractionPipeline(TokenClassificationPipeline):
def __init__(self, model, *args, **kwargs):
super().__init__(
model=AutoModelForTokenClassification.from_pretrained(model),
tokenizer=AutoTokenizer.from_pretrained(model),
*args,
**kwargs
)
def postprocess(self, all_outputs):
results = super().postprocess(
all_outputs=all_outputs,
aggregation_strategy=AggregationStrategy.FIRST,
)
return np.unique([result.get("word").strip() for result in results])
# Load pipeline
model_name = "ml6team/keyphrase-extraction-distilbert-openkp"
extractor = KeyphraseExtractionPipeline(model=model_name)
# Inference
text = """
Keyphrase extraction is a technique in text analysis where you extract the
important keyphrases from a document. Thanks to these keyphrases humans can
understand the content of a text very quickly and easily without reading it
completely. Keyphrase extraction was first done primarily by human annotators,
who read the text in detail and then wrote down the most important keyphrases.
The disadvantage is that if you work with a lot of documents, this process
can take a lot of time.
Here is where Artificial Intelligence comes in. Currently, classical machine
learning methods, that use statistical and linguistic features, are widely used
for the extraction process. Now with deep learning, it is possible to capture
the semantic meaning of a text even better than these classical methods.
Classical methods look at the frequency, occurrence and order of words
in the text, whereas these neural approaches can capture long-term
semantic dependencies and context of words in a text.
""".replace("\n", " ")
keyphrases = extractor(text)
print(keyphrases)
# Output
['keyphrase extraction' 'text analysis']
📚 Training Dataset
OpenKP is a large-scale, open-domain keyphrase extraction dataset with 148,124 real-world web documents along with 1-3 most relevant human-annotated keyphrases.
You can find more information in the paper.
👷♂️ Training Procedure
Training Parameters
Parameter | Value |
---|---|
Learning Rate | 1e-4 |
Epochs | 50 |
Early Stopping Patience | 3 |
Preprocessing
The documents in the dataset are already preprocessed into list of words with the corresponding labels. The only thing that must be done is tokenization and the realignment of the labels so that they correspond with the right subword tokens.
from datasets import load_dataset
from transformers import AutoTokenizer
# Labels
label_list = ["B", "I", "O"]
lbl2idx = {"B": 0, "I": 1, "O": 2}
idx2label = {0: "B", 1: "I", 2: "O"}
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
max_length = 512
# Dataset parameters
dataset_full_name = "midas/openkp"
dataset_subset = "raw"
dataset_document_column = "document"
dataset_biotags_column = "doc_bio_tags"
def preprocess_fuction(all_samples_per_split):
tokenized_samples = tokenizer.batch_encode_plus(
all_samples_per_split[dataset_document_column],
padding="max_length",
truncation=True,
is_split_into_words=True,
max_length=max_length,
)
total_adjusted_labels = []
for k in range(0, len(tokenized_samples["input_ids"])):
prev_wid = -1
word_ids_list = tokenized_samples.word_ids(batch_index=k)
existing_label_ids = all_samples_per_split[dataset_biotags_column][k]
i = -1
adjusted_label_ids = []
for wid in word_ids_list:
if wid is None:
adjusted_label_ids.append(lbl2idx["O"])
elif wid != prev_wid:
i = i + 1
adjusted_label_ids.append(lbl2idx[existing_label_ids[i]])
prev_wid = wid
else:
adjusted_label_ids.append(
lbl2idx[
f"{'I' if existing_label_ids[i] == 'B' else existing_label_ids[i]}"
]
)
total_adjusted_labels.append(adjusted_label_ids)
tokenized_samples["labels"] = total_adjusted_labels
return tokenized_samples
# Load dataset
dataset = load_dataset(dataset_full_name, dataset_subset)
# Preprocess dataset
tokenized_dataset = dataset.map(preprocess_fuction, batched=True)
Postprocessing (Without Pipeline Function)
If you do not use the pipeline function, you must filter out the B and I labeled tokens. Each B and I will then be merged into a keyphrase. Finally, you need to strip the keyphrases to make sure all unnecessary spaces have been removed.
# Define post_process functions
def concat_tokens_by_tag(keyphrases):
keyphrase_tokens = []
for id, label in keyphrases:
if label == "B":
keyphrase_tokens.append([id])
elif label == "I":
if len(keyphrase_tokens) > 0:
keyphrase_tokens[len(keyphrase_tokens) - 1].append(id)
return keyphrase_tokens
def extract_keyphrases(example, predictions, tokenizer, index=0):
keyphrases_list = [
(id, idx2label[label])
for id, label in zip(
np.array(example["input_ids"]).squeeze().tolist(), predictions[index]
)
if idx2label[label] in ["B", "I"]
]
processed_keyphrases = concat_tokens_by_tag(keyphrases_list)
extracted_kps = tokenizer.batch_decode(
processed_keyphrases,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
return np.unique([kp.strip() for kp in extracted_kps])
📝 Evaluation Results
Traditional evaluation methods are the precision, recall and F1-score @k,m where k is the number that stands for the first k predicted keyphrases and m for the average amount of predicted keyphrases. The model achieves the following results on the OpenKP test set:
Dataset | P@5 | R@5 | F1@5 | P@10 | R@10 | F1@10 | P@M | R@M | F1@M |
---|---|---|---|---|---|---|---|---|---|
OpenKP Test Set | 0.12 | 0.33 | 0.17 | 0.06 | 0.33 | 0.10 | 0.35 | 0.33 | 0.31 |
🚨 Issues
Please feel free to start discussions in the Community Tab.
- Downloads last month
- 12
Dataset used to train ml6team/keyphrase-extraction-distilbert-openkp
Space using ml6team/keyphrase-extraction-distilbert-openkp 1
Evaluation results
- F1 (Seqeval) on openkpself-reported0.430
- F1@M on openkpself-reported0.314